UI constraints in UPDF

I thought about it a while and want to start the discussion to prepare a section in the spec.

Up to now I limit myself to contraints in the UI, although we are facing similar problems when printing, too. But this often results in CallBack functions. That’s why I call it “UI constraints”.

Statement 1 (to be discussed): Constraints handle limitations and automatic switches

To provide consistent functionality, we do not only handle limitations and exclusions like “if DialogElement1 is set to Setting1, DialogElement2 cannot show Setting2”, but also automatic switches like “if DialogElement1 is set to Setting1, DialogElement2 is to be set to Setting2”. I do not think this needs a lot of extra work either, but would ease the understanding of even complex UI behavior.

Statement 2 (to be discussed): Installed options are to be identified

InstalledOptions must be declared as such so they can be identified for specific functionality.

Statement 3 (to be discussed): All interdependencies between driver elements are handled as constraints

Only the model itself or InstalledOptions like an Input or Output option can own another driver element. So only the model and any InstalledOption can have lists of paper sources, sizes, media types, duplex modes, etc.

This might be a kind of a revolution for some people, but it keeps the printer’s description and later the driver very straightforward. It means that the model owns e.g. paper sources and paper sizes in separate lists, but this part of the UPDF does not tell that certain sources do only support certain sizes. I know that this would require a significant change of the sample XML of M.Yeung. But paper sources and even other driver elements have so many different attributes between different manufacturers nowadays that it would extremely hard to find a generic way to describe these interdependencies within the listings of driver elements.

Now while I seriously think about constraints it looks more reasonable to me to provide a separate constraint section and tell there as a constraint that the envelope tray does not feed Letter and many other sizes.

Statement 4 (to be discussed): The list of conditional sets combined to a constraint is infinite

We want to allow maximum flexibility. With combining two conditional sets to a constraint this is only possible in a limited way. So we could tell that duplex is only available with a certain amount of RAM and depending on certain paper sizes and only from certain paper sources.

Simplifying that and ignoring perfect XML syntax at the moment this could result in two constraints like:

Constraints

Model

Constraint

Set

Condition RAM <= 2MB /Condition

/Set

Set

Condition (PaperWidth x PaperHeight) > 2MB /Condition

/Set

Set

Condition Duplex != Off /Condition

/Set

/Constraint

Constraint

Set

Condition PaperSource != Manual /Condition

/Set

Set

Condition Duplex != Off /Condition

/Set

/Constraint

/Model

/Constraints

I’d like to define some rules with this simplified sample:

Rule 1: InstalledOptions will not be changed by constraints.

So condition 1 of constraint 1 will not result in any change in the UI.

This explaines Statement 2.

Rule 2: The definition of the constraint defines the order in which it will be resolved.

This can be ignored in case of exactly two conditional sets per constraint. In case of more conditional sets it may happen that a certain selection in the UI is activating condition 1 of constraint 1. May be that resolving condition 2 of constraint 1 is already resolving the complete constraint. So condition 3 of constraint 1 can be skipped.

That means the order of conditions is Top-Bottom. The top condition is to be resolved first and so on. That allows control about priorities.

Rule 3: The order of constraints define their priorities.

Not very obvious that we need that rule. But resolving a certain constraint may activate another constraint. Hoping we will never get into an infinite loop, it’s now important, what to do first and next.

Defining a global default element or message could help avoid crashing the driver.

Rule 4: InstalledOptions have their own constraints.

They do not change or extend constraints of the basic models.

In case an InstalledOption is going to be merged into a basic UPDF file, the corresponding block of constraints should be added after all other blocks already listed. In the example above no InstalledOption is listed. So I only show the Model section. The string Model is a technical variable, not the UI string (I have seen cases, where models had different names in different locales).

This procedure keeps it easier to handle InstalledOptions. Certain constraint blocks can be easily removed without being afraid to break anything. In case there are constraints between different InstalledOptions – and this is known – the constraint blocks for both InstalledOptions should list the corresponding constraints.

To-do-list

· We have to decide whether we define the good or the bad elements. In my examples I defined the bad combinations in all the constraints.
This is causing some problems when trying to define automatic switches. See further below in this document.

· Some syntax issues must be discussed.

Up to here that’s the basic part.

You may have wondered why I braced the conditions with “Set”.

· I can well imagine that we realize an OR by simply listing several conditions:

Set

Condition PaperSource = Tray1 /Condition

Condition PaperSource = Tray2 /Condition

Condition PaperSource = EnvelopeTray /Condition

/Set

Set

Condition Duplex != Off /Condition

/Set

· I can well imagine we want to handle other settings within a set. Samples could be “Action” and “Message”.

The Action tag

· The action to resolve could be to mark the bad element. This could result in a red cross next to the bad element, e.g. in a combo box.
 Action Mark = RedCross.JPG

· The action to resolve could be to gray the bad element. This would show the bad element gray, but the others normal black.
 Action Gray = 75%

· The action to resolve could be to hide the bad element, apparantly the default, in case neither Mark, Gray nor Hide is listed under the Action tag.
 Action Hide = TRUE

· The action to resolve could be to show an info button to allow the user to activate a detailed message.
 Action Info = INFO.JPG

· The action to resolve could be to select a certain driver element active. In case Select is not listed under the Action tag, the first element of the driver element list of this UI element will be activated. I can well imagine several Select lines per constraint Set. This would result in a kind of a fallback selection in case the first listed Select line cannot be used because of a certain driver configuration.
 Action Select = Manual

I can well imagine that several lines are combined to define a complex action:

Set

Condition UIElement1 != DriverElementX /Condition

Action Mark = MARK.JPG

Action Gray = 75%

Action Info = INFO.JPG

/Set

Set

Condition UIElement2 != DriverElementY /Condition

Action Info = INFO.JPG

Action Select = DriverElementZ1

Action Select = DriverElementZ2

/Set

In case the driver provides all required functionality this would be resolved in case UIElement1 is to be changed: DriverElementX would be grayed and marked. An Info button would be visible next to the UI element, even when the combo box is not open.

In case UIElement2 is to be changed: DriverElementY would be hidden. The selected driver element would not be the first in the list, but DriverElementZ1 – if available. Otherwise DriverElementZ2. Info button as above.

The Message tag

This would only be used in case there is an Action Info line defined.

· We want to activate a certain text.
 Message Text = Constraint_PaperSource_Duplex

· We may want to activate different levels of message boxes.

· Exit: Just the message and and Exit button. Default.

· Exit_Show: The message, an Exit button and a Show button. Pressing the Show button would should another window with more detailed info. I think of the list of constraints that has been used for the UIElement, where the technical variables would be replaced by the locale specific strings. Although this would still be quite a technical information in a strict syntax it provides a lot of details with generic functionality. Just an idea.

· Exit_Show_Save: As Exit_Show, except that the detailed info can be saved to a file. Might be useful for the support or if somebody wants to manipulate his UPDF file.
 Message Window = Exit

So the latest example could be extended to something like

Set

Condition UIElement1 != DriverElementX /Condition

Action Mark = MARK.JPG

Action Gray = 75%

Action Info = INFO.JPG

Message Text = Constraint_UIElement1_UIElement2

Message Window = Exit_Show

/Set

Set

Condition UIElement2 != DriverElementY /Condition

Action Info = INFO.JPG

Action Select = DriverElementZ1

Action Select = DriverElementZ2

Message Text = Constraint_UIElement1_UIElement2

Message Window = Exit_Show

/Set

I think it is realistic to assume the same message text for both sets to save translation effort.

Automatic switches

This is not much more than an idea up to now. The general problem to realize something like “if this is selected here, something else should happen there” is very similar to constraints in the basic sense.

So I wonder whether we can use this or a very similar kind of syntax not only for the negative combinations (this and that cannot be combined), but also for activating certain selections depending on others.

I will keep an eye on that.

