P1394 Mail Archive: P1394> Alternative Bi-Di proposal utilizing unordered model(Was Re: unordered execution)

P1394 Mail Archive: P1394> Alternative Bi-Di proposal utilizing unordered model(Was Re: unordered execution)

P1394> Alternative Bi-Di proposal utilizing unordered model(Was Re: unordered execution)

Akihiro Shimura (shimura@pure.cpdc.canon.co.jp)
Mon, 23 Mar 1998 23:12:51 +0900 (JST)

--TW9uLCAyMyBNYXIgMTk5OCAyMzoxMzowOSArMDkwMA==
Content-Type: text/plain; charset=ISO-2022-JP

Hello, All,

I have prepared an alternative proposal for bi-di communication
mechanism utilizing unordered model to overcome inefficiencies
potentially caused by the ordered model.

Unfortunately, I cannot attend the next Portland meeting, so
Mr.Isoda from Canon will make a presentation on this document in the
meeting instead of me.

I appreciate if 20 or 30 minutes slot is assigned for the presentation.

Please find attached model part of the document and comment below....

On Fri, 13 Mar 1998 19:05:18 +0900
Nagasaka Fumio <Nagasaka.Fumio@exc.epson.co.jp> wrote:

> Greg Shue wrote: (reformatted)
>
> > ….. That provision
> > already exists by using the current proposal in packet mode and
> > making the supported packet size (per direction) be able to hold
> > the largest packet transferred in that direction. Since the
> > current proposal supports packets of 65535+6 bytes, nothing needs
> > to be changed. The nature of CBT will prevent the fetch agent
> > >from blocking while waiting for a data transfer. No data
> > transfer commands will be sent which could not be immediately
> > processed. No out-of-order processing is required.
>
> Agreed. I think we can eliminate out-of-order processing model.

I don't think so.

Though the CBT may prevent deferring(re-ordering or retrying) the ORB
for initiator-to-target transfer in the initiator, there still exists
an inefficiency on target-to-initiator transfer.
In order to prevent ORB re-ordering in the initiator, it is necessary
to guarantee the completion of each request. In case of target-to-
initiator transfer, the CBT may only guarantee the receiving space on
the initiator and does not necessarily guarantee the completion on
the target because the target may not be ready to send a data.
To prevent this, it will be necessary for the initiator to defer
appending target-to-initiator request ORB until ready-to-send is
indicated by the target. Because appending pending read request to
the task set requires indication from the target and the initiator
need appending process based on the indication after the indication
arrived, this procedure will not so efficient as shown by the spirit
of SBP-2.

I have prepared a "Model" part of a document utilizing "Unordered
Model" to overcome these inefficiencies potentially caused by the
"Ordered Model".
Though the model part of the document(Simple HPT or SHPT) is revised
>from the HPT document, the model itself is very different from the
original HPT model.

In this SHPT model, re-ordering the ORB between write and read
request in the initiator is not required at all because the target
does re-order between them.
In the "ordered model", the ORB re-ordering in the initiator will
occur whenever the requested order in the task set is not appropriate
for the "target" to execute.
Because the ORB re-ordering in the initiator requires aborting tasks
by the target, re-appending the tasks to the task list by the
initiator and re-fetching the tasks by the target potentially in
non-linear order of retries, it will be expensive for the initiator,
the target and the bus.

Also, in this SHPT model, the initiator does not need to synchronize
with the indication from the target to append the pending read request
to the task set because the pending state is achieved in the execution
agent on the target.
In the "ordered model", if the initiator limits the number of
requests in the task set very small (e.g., one) to avoid potential ORB
re-ordering in the initiator, the target will enter suspend state
frequently before requests are appended to the task list. In this case,
the bandwidth benefit of the SBP-2 will be reduced by the latencies on
each side.

In addition, this SHPT model does not require to limit maximum data
payload size, and does not need to prepare the maximum data payload
size of (intermediate) receive buffer to guarantee the delivery.

Regards,

Akihiro Shimura

--
 Akihiro Shimura (shimura@pure.cpdc.canon.co.jp)
 Office Imaging Products Development Center 3
 CANON INC.

--TW9uLCAyMyBNYXIgMTk5OCAyMzoxMzowOSArMDkwMA== Content-Type: application/octet-stream; name="shpt04c_model.pdf" Content-Disposition: attachment; filename="shpt04c_model.pdf" Content-Transfer-Encoding: base64

JVBERi0xLjINJeLjz9MNCjIwIDAgb2JqDTw8IA0vTGluZWFyaXplZCAxIA0vTyAyMyANL0ggWyA3 ODEgMjAzIF0gDS9MIDI0OTE3IA0vRSAzNjMzIA0vTiA1IA0vVCAyNDM5OSANPj4gDWVuZG9iag0g ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICB4cmVmDTIwIDExIA0wMDAwMDAwMDE2IDAwMDAwIG4NCjAwMDAwMDA1ODQgMDAwMDAgbg0KMDAw MDAwMDYzOSAwMDAwMCBuDQowMDAwMDAwOTg0IDAwMDAwIG4NCjAwMDAwMDExMzggMDAwMDAgbg0K MDAwMDAwMTI0MSAwMDAwMCBuDQowMDAwMDAxMzQ4IDAwMDAwIG4NCjAwMDAwMDI5MTQgMDAwMDAg bg0KMDAwMDAwMzQwNCAwMDAwMCBuDQowMDAwMDAwNzgxIDAwMDAwIG4NCjAwMDAwMDA5NjQgMDAw MDAgbg0KdHJhaWxlcg08PA0vU2l6ZSAzMQ0vSW5mbyAxOSAwIFIgDS9FbmNyeXB0IDIyIDAgUiAN L1Jvb3QgMjEgMCBSIA0vUHJldiAyNDM4OSANL0lEWzw3ZTIzMjA0NGI5MzhmMmM3MDFlODE4OGQ2 NGQ0YWUyYT48N2UyMzIwNDRiOTM4ZjJjNzAxZTgxODhkNjRkNGFlMmE+XQ0+Pg1zdGFydHhyZWYN MA0lJUVPRg0gICAgIA0yMSAwIG9iag08PCANL1R5cGUgL0NhdGFsb2cgDS9QYWdlcyAxNyAwIFIg DT4+IA1lbmRvYmoNMjIgMCBvYmoNPDwgDS9GaWx0ZXIgL1N0YW5kYXJkIA0vViAxIA0vUiAyIA0v TyAoIFXHVscuGtcCYI6BlqytRHrTLRfP9YMjX23RX+19q2cpDS9VICiJiIsGh0Bvou3GVjFx8zQv m36ssoNcKXE0pNPNV/nGVWwpDS9QIDY1NDkyIA0+PiANZW5kb2JqDTI5IDAgb2JqDTw8IC9TIDg0 IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzAgMCBSID4+IA1zdHJlYW0NCt5EjFCX213+ sk2V912vAMcvBUUlzn+/9S/dQMBucm+qGakkfP7i3QguJOpk57qizfOfAYGVNgYo3hi9FA93YwkG hxvpA2+wIqbxQRVMWxS6mKhPp9iWzo4G5+oU057wBthgSw1lbmRzdHJlYW0NZW5kb2JqDTMwIDAg b2JqDTk5IA1lbmRvYmoNMjMgMCBvYmoNPDwgDS9UeXBlIC9QYWdlIA0vUGFyZW50IDE2IDAgUiAN L1Jlc291cmNlcyAyNCAwIFIgDS9Db250ZW50cyAyNyAwIFIgDS9NZWRpYUJveCBbIDAgMCA2MTIg NzkyIF0gDS9Dcm9wQm94IFsgMCAwIDYxMiA3OTIgXSANL1JvdGF0ZSAwIA0+PiANZW5kb2JqDTI0 IDAgb2JqDTw8IA0vUHJvY1NldCBbIC9QREYgL1RleHQgXSANL0ZvbnQgPDwgL0YzIDI1IDAgUiA+ PiANL0V4dEdTdGF0ZSA8PCAvR1MxIDI4IDAgUiA+PiANPj4gDWVuZG9iag0yNSAwIG9iag08PCAN L1R5cGUgL0ZvbnQgDS9TdWJ0eXBlIC9UeXBlMSANL05hbWUgL0YzIA0vRW5jb2RpbmcgMjYgMCBS IA0vQmFzZUZvbnQgL1RpbWVzLVJvbWFuIA0+PiANZW5kb2JqDTI2IDAgb2JqDTw8IA0vVHlwZSAv RW5jb2RpbmcgDS9EaWZmZXJlbmNlcyBbIDAgL2dyYXZlIC9hY3V0ZSAvY2lyY3VtZmxleCAvdGls ZGUgL21hY3JvbiAvYnJldmUgL2RvdGFjY2VudCAvZGllcmVzaXMgDS9yaW5nIC9jZWRpbGxhIC9o dW5nYXJ1bWxhdXQgL29nb25layAvY2Fyb24gL2RvdGxlc3NpIC9idWxsZXQgL2J1bGxldCANL2J1 bGxldCAvYnVsbGV0IC9idWxsZXQgL2J1bGxldCAvYnVsbGV0IC9idWxsZXQgL2J1bGxldCAvYnVs bGV0IA0vYnVsbGV0IC9idWxsZXQgL2J1bGxldCAvYnVsbGV0IC9idWxsZXQgL2J1bGxldCAvYnVs bGV0IC9idWxsZXQgDTM5IC9xdW90ZXNpbmdsZSA5NiAvZ3JhdmUgMTI3IC9idWxsZXQgL2J1bGxl dCAvYnVsbGV0IC9xdW90ZXNpbmdsYmFzZSANL2Zsb3JpbiAvcXVvdGVkYmxiYXNlIC9lbGxpcHNp cyAvZGFnZ2VyIC9kYWdnZXJkYmwgL2NpcmN1bWZsZXggL3BlcnRob3VzYW5kIA0vU2Nhcm9uIC9n dWlsc2luZ2xsZWZ0IC9PRSAvYnVsbGV0IC9idWxsZXQgL2J1bGxldCAvYnVsbGV0IC9xdW90ZWxl ZnQgDS9xdW90ZXJpZ2h0IC9xdW90ZWRibGxlZnQgL3F1b3RlZGJscmlnaHQgL2J1bGxldCAvZW5k YXNoIC9lbWRhc2ggDS90aWxkZSAvdHJhZGVtYXJrIC9zY2Fyb24gL2d1aWxzaW5nbHJpZ2h0IC9v ZSAvYnVsbGV0IC9idWxsZXQgL1lkaWVyZXNpcyANL3NwYWNlIDE2NCAvY3VycmVuY3kgMTY2IC9i cm9rZW5iYXIgMTY4IC9kaWVyZXNpcyAvY29weXJpZ2h0IC9vcmRmZW1pbmluZSANMTcyIC9sb2dp Y2Fsbm90IC9oeXBoZW4gL3JlZ2lzdGVyZWQgL21hY3JvbiAvZGVncmVlIC9wbHVzbWludXMgL3R3 b3N1cGVyaW9yIA0vdGhyZWVzdXBlcmlvciAvYWN1dGUgL211IDE4MyAvcGVyaW9kY2VudGVyZWQg L2NlZGlsbGEgL29uZXN1cGVyaW9yIA0vb3JkbWFzY3VsaW5lIDE4OCAvb25lcXVhcnRlciAvb25l aGFsZiAvdGhyZWVxdWFydGVycyAxOTIgL0FncmF2ZSANL0FhY3V0ZSAvQWNpcmN1bWZsZXggL0F0 aWxkZSAvQWRpZXJlc2lzIC9BcmluZyAvQUUgL0NjZWRpbGxhIC9FZ3JhdmUgDS9FYWN1dGUgL0Vj aXJjdW1mbGV4IC9FZGllcmVzaXMgL0lncmF2ZSAvSWFjdXRlIC9JY2lyY3VtZmxleCAvSWRpZXJl c2lzIA0vRXRoIC9OdGlsZGUgL09ncmF2ZSAvT2FjdXRlIC9PY2lyY3VtZmxleCAvT3RpbGRlIC9P ZGllcmVzaXMgL211bHRpcGx5IA0vT3NsYXNoIC9VZ3JhdmUgL1VhY3V0ZSAvVWNpcmN1bWZsZXgg L1VkaWVyZXNpcyAvWWFjdXRlIC9UaG9ybiAvZ2VybWFuZGJscyANL2FncmF2ZSAvYWFjdXRlIC9h Y2lyY3VtZmxleCAvYXRpbGRlIC9hZGllcmVzaXMgL2FyaW5nIC9hZSAvY2NlZGlsbGEgDS9lZ3Jh dmUgL2VhY3V0ZSAvZWNpcmN1bWZsZXggL2VkaWVyZXNpcyAvaWdyYXZlIC9pYWN1dGUgL2ljaXJj dW1mbGV4IA0vaWRpZXJlc2lzIC9ldGggL250aWxkZSAvb2dyYXZlIC9vYWN1dGUgL29jaXJjdW1m bGV4IC9vdGlsZGUgL29kaWVyZXNpcyANL2RpdmlkZSAvb3NsYXNoIC91Z3JhdmUgL3VhY3V0ZSAv dWNpcmN1bWZsZXggL3VkaWVyZXNpcyAveWFjdXRlIA0vdGhvcm4gL3lkaWVyZXNpcyBdIA0+PiAN ZW5kb2JqDTI3IDAgb2JqDTw8IC9MZW5ndGggNDE1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+IA1z dHJlYW0NCkdioj+ei0uETgjRp4puJGiFqxbZvQQCuXrwLin+mAMzPT5GKXdgBYt9rMBn7J8n0CoY YxALr3W1BmERO8b4rQo5nx3PFNsjRmWP9iZhcUiEss0d4rboxc5iitHgXQ6rfnbv1tI453BKouIR xbbWhMeuLYmTem9O1Smv/Th9ycJX1JW/bHN6dcgfNam6ATY9fvbH+77w3DTYlywVC7nRFO7QGugS zLu96ykeGtq9gi8ZnvU8BIW4KgfwZQDa73Ouon2zI4tTRHVBbpuwo4I0xRP90XNjYkVsW+59fWG/ lAwIGIP9MitlWCHBCgzIE/m4Ia+AkspY2ohtHY09EEsr3AL2wekwAqHV0m3qRAxkZF+qpKmWRgGC Y069YUOkDRaWSjvFj94t82N52ywgIKxxxIfK66mMbFYFqsgxDvsMZZmJyJVH67S689/TW9eOwaq7 NE8dykRdE4dqx5LJylXN6uhkJx/CP96m/TBoiJQax0aa/KGOP6Dr7ps2jba7KLlxAOHhsK+aFvBo RrPK9NVtHxeYY2H/SN7zQMrN6GgBiYINZW5kc3RyZWFtDWVuZG9iag0yOCAwIG9iag08PCANL1R5 cGUgL0V4dEdTdGF0ZSANL1NBIGZhbHNlIA0vT1AgZmFsc2UgDS9IVCAvRGVmYXVsdCANPj4gDWVu ZG9iag0xIDAgb2JqDTw8IA0vVHlwZSAvUGFnZSANL1BhcmVudCAxNiAwIFIgDS9SZXNvdXJjZXMg MiAwIFIgDS9Db250ZW50cyAzIDAgUiANL01lZGlhQm94IFsgMCAwIDYxMiA3OTIgXSANL0Nyb3BC b3ggWyAwIDAgNjEyIDc5MiBdIA0vUm90YXRlIDAgDT4+IA1lbmRvYmoNMiAwIG9iag08PCANL1By b2NTZXQgWyAvUERGIC9UZXh0IF0gDS9Gb250IDw8IC9GMyAyNSAwIFIgL0Y1IDEzIDAgUiAvRjcg MTQgMCBSIC9GOSAxNSAwIFIgPj4gDS9FeHRHU3RhdGUgPDwgL0dTMSAyOCAwIFIgPj4gDT4+IA1l bmRvYmoNMyAwIG9iag08PCAvTGVuZ3RoIDI0MzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4gDXN0 cmVhbQ0K+2yKourdGBjZQDval0uK3SCBW7B/nfWXx0Qixk+oUBCevVH3F+qXtxUdQhZePETBIFb3 K60+kyTvj0d3Rld94EMlE4BrStaR02/o4DfwqA8h9XS2CMDu12ceN89Nag3geaZ/Y6sSf+FqJFQ6 /zh4gAR71+7b7llyBuGahYiYqe4TwxLDHT1PtAYDSndTDbcZT5JTL9d6lwg85wooF8HigYhX2+UK pdjOuLGnMwGaul1EEGdXEmIt1W/rWmJyIWz8CNxIWeV2Q8q4fNkBTVfgl3cLte/HezTvG9mQsXTJ 3/b/owNMRUGwZyVfXYtUpRXpK8hgeLPmwTO1HtVnP4u4OnmgQJFzt/0Q3/zBzueC9yK3Py9nCigu VBa347zT243y63/R6Pl+1nQZU5p3vioYP5EG91RLi7auvVCXQ7I70DSSXrBNZfuBtlGp54dw8EVA +injA8yg2YH+Z/1LBehZcDEbvVwtdn9IA186dx+og6Kus3/IaVvJcb8KkiyrEOo8b2fPUzl99+UM oSK90C4LCSsocSr1Z3N/l3GCgYgX2kQDcg8hOS1rFVMR9FWblL1+f2zSnjTfsesm/28Af1iWhXr5 VPhQukLa8QK+A9Y/O40SKrf+gqOo3TTK+1O5m6CyCP7yyqZFYyLT+PlmHhYjPlxSYOJ4US+0ZFAK QBwR84ghm0hdTfcwZ8qJJonqGwC/ozyuMNWvmd/BMknnKAq5v7nMZDCJ7TEAwWN6x0c9GK/lY9Pw EVV5GuQnwCu4vhoOxIPZv5DPDZFeQxpzOHP9TinY2Ze53OiB6a511YOOBz7VanvJo6faycqjJC94 BcePwbAgptRZVsoUqdp2LyYF4Mzb0xRrzvoWod+qzzjLPrgZrALIcBp0H9j5ch64UUmaw0ksX9Kn T351KIpasLx7DTPX7q44eBaqLYOR1bgy/WeZG/3H7dHU4ljOWsuJXxf2W2FPBBOTH7lYxAuhVfht iIVj6qLH9qYmKvyBMfFUKqip/ozm6uT2fLngqJOZjVGbRDqneNaz4/zwcNtlVIW4qBq+RXXdgCPe e+E5RUbiqySUJW4BZjZUyq+AIQRVJrkxs0i8rQEqYPbTTnkvkziP5l1fIGvFBdE+G7tE2bjs4VLK qYLKYzJa5sAJPwx/6vGY5silUv2VXfP95qsxmvE655Bg9eXYlrytn8MTJtejy1/71bAjbfXLlG61 we2iCWAUGrQ8VJBLSem3Zx6likpVbhw3T1RKmt1wGr0hrfOyty1JCmDsDjRZkIwxHgRyHW9Zkh+B v83Di7TXDKXjDHo9Xpnm8QCfena76Lsmt7k+Z3D/JUMeIfLIE1nOVu4IIbrKDkF3W9G6sypJ5V0t uvu+aL0WMm3m1au/klLNzitswUaO5gt1fywIQcY3/EE7iFqY7AhVXD4Jo925lQwFPikND3yUJw7D sQ/XdL9jvzNaL8HFGpOzQltSkhdwi4Rl6yRrQhTrD+dH0SrhnYRcERChqvw2sHHDQCHqyk4c3LT8 4+yL+Ke1rMTh+56vQ2oJrHDaHl4Q/4Gn4POgAowuaYEkScBnPm/mNhx+CyxMQSX9WCaNVGQ9MVOb lGWZdXCMGUVTwDiGHFnG2UbKoUpYzmMQbwJ6t1gL1x+npujr8xpGUnhJNi9z6iii6oWSrB61XCrZ V49NMEkh09B+zrMVDdQpG4FfP0vj9vwgW+rbiO9Ihyq/uDrn8Z/aGywKATFoWs7HJorJ5vpBCXx9 awTSARwBOgSW2xRSzEKZ6w+5d8Mcxz2zb1SPAp0H0LXdBgvGpxPv8Jpu47pgbnratuHaNUU0B9CM smz+ZnpTHYJEp9WXnzZQX7y30XJHv2slaPfHIwcrcFbzSNyTWUpQrGysg51cTszOOeLMDLCfKXla fXikn4SlrCaHaqQLu4BX0tJt58RRH4DHDXp9k+DbegnbdIQDA97Wh16PeQIgkrcd379sOiRWTXPV flCYQBuB0bQV2jEvb5lwcfGiHwJTsbstPqjlVT6xVohyl5tqBIa9hkSjxr8lHHZZKvgA9+l2lqOg bYjjPkNcNdkWXqUxyWeqgzMsZBo1Gyz8TseSR+7+D9HouIT2ZdLdwhkW+3Rk/SPaL4nJvykBT6IN SfoFu6ItPtFaSqetSW8kyAV/lD6ePlXdNd8NeAceqU0N8EYdo9zTDl9N6ms8lZ9Vw7CuHk4EDZyY XYkMJTy2dAJeq85ypi7WI8K7A/8E28dfK22g0dKq9diJ8gdxyOI2wg+GMycuvAKp3Q8H4bdUAR+m DQHlUXI+itPi6InykI9i2jf4nI9u4FcgNce8zDkaDDIcb4GbgOAHCUQdoUmANDuViBE4lW3kJHWp URgSF8RDI4x8bPK8JvbhCwmdU4XJQmdhA40vapJv23ehgyTBArc3hAaYKLpWZeLzPzNKjp8sHMQj qb0MoML7Iyh7UK5wcNfyK5EDBP4G+IND/fKKa/QsZwE/+TYiv0ZBkQCsinja1NuXgySpLxR+dC8V meaAVULZLGBCE93+n+kd3BzigliU6MpDftCXyW+qlo0XAeZH7MmyRN8NN4R2loI2m0mW9GY3DFNP y/CRR81Lr+7cmbpWfrc2/ueBjQJlxXD48IHV8B4hf2qmmdBqudCXy18jJo45dyz9+gFT+bWYChFc Knl/KC5EYeHj/xF/aG7jpwVBh2s4xhqlXREQ+5LX0qSoegyMaTtgkbDN0QCPObOTLLP15zPaVYaa jF1F7HFLK4YNQX3kjEQE6d5Le8OdaRZFO/9JfSAWaSf+xqM95wh0zxAd5SAMeK6rNk5k2DIZHeQ2 lLQYeFUhiWMaUHSFzm5d7SpvhwZ9siL3wimFjdQQuIaEC5NAksWt4/sBRB0TB+eTpqXMIODilUXq jHOfmgIumD++VD9wY9camcnU/YRg+XLxe6ktMUl0WFb5F3zIHHjL9rFfPFzDx8u/nJVnyKSstHKg usViArICRvYqz6SkdOfo68DIACunK6NQ2CehPvVS2hJrugsVJqnTn/Waz8R3FS3l8nYu3oGxNeJR NeFO3b+hVyMmnvDw4bg8TTZ9gq3K2e8LkdGZm0vwuIHvj7r/xcNd7EaKtCwDIgXrRcooTaiG168v GYX2Cj3upLW4jUbcg3p71zVc7oWP1Ha+IRw2nFHUrq1OJzvM4ukW5P9zW+YwalNIIfUAhlNMybWo T1rm5lsqxwK1/+NhLSnmLTN71ZmrWm8/HqlLL5NntXHYonwCZSDzAl4356INZW5kc3RyZWFtDWVu ZG9iag00IDAgb2JqDTw8IA0vVHlwZSAvUGFnZSANL1BhcmVudCAxNiAwIFIgDS9SZXNvdXJjZXMg NSAwIFIgDS9Db250ZW50cyA2IDAgUiANL01lZGlhQm94IFsgMCAwIDYxMiA3OTIgXSANL0Nyb3BC b3ggWyAwIDAgNjEyIDc5MiBdIA0vUm90YXRlIDAgDT4+IA1lbmRvYmoNNSAwIG9iag08PCANL1By b2NTZXQgWyAvUERGIC9UZXh0IF0gDS9Gb250IDw8IC9GMyAyNSAwIFIgL0Y3IDE0IDAgUiAvRjkg MTUgMCBSID4+IA0vRXh0R1N0YXRlIDw8IC9HUzEgMjggMCBSID4+IA0+PiANZW5kb2JqDTYgMCBv YmoNPDwgL0xlbmd0aCA3MDg5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+IA1zdHJlYW0NCgZ+RMIN SQp/LqPHQqoMwv6ZyjhFxVk2JqTNy67qkXI46rKKXMlRNDVg9/j9P1HXzvRM85xZsjpRJ0tHflb2 7u3vQarJu8jmVfwZ4XR2eIQXgaWn82dpCTBl5LWDLpNtWmbWNVZWWWiX27G2QgAOVqePe4ICZ5Xk FLkNsYcNBPvUqbGSOQ2rEcAvlMa2ifPpVswn0x3L3RedE17xY8QGzNtTZiF5Ed+d1W+4FuMS28vb gcEyOFW0nZRHzrifsTfTmdCXxJmVLJzBfadD4o7zMH5QpNS9AJveR23lNAIOdRsZVNDRZ/UZYz+P /tQdjugO+qWRNcwwycQgXn5N5N83D06IVrs5nXboojjyxG/HThUOWeVpfUocowORryeis8gf4hil /RlXvb/RvQ+CM9GGqjBr/4/GSrQsJvMTnqyLqz4SrXhhLxYE5Rel3MfZJEJRb9wHrRyFcOCMUyKG +wcAs6kwaJBUNAw2xGdEF64p0CKpNuZ6HdcqKb3e1gXE9N4wRT0IsmdygH2lqGVIeqpf1XySrOQ+ YZSdqcSxtoRVui4JtTKro0O7pR4UJFCbeRqWbaltjtFbt9LvgDIFUCRQ9LoaeGl3BLcLkqN18ER2 vdhlFKCiCoTQFSB6NNDz43iCBl71zX0vTz5H6b2xH9hfO1R4t41PiE17rmA8Xh9BWnNiC3i388Hk GR5Hzo0wRzUAcnszg3v+xJy/Os0212ve/xQO9a4BiD0UsN4hNkKiBDU9ZB8jh6KZS59dtdOfmCpq zdPcl4TVpVx43Kgc/zOV1XVCo59Ub3qb2ChlXjtDOpYWd+g5EGsihOM9YJWWiR/ZOp+4/hJ9Riiy fvdH7OdkO/jeR4vdwX9t+oPsCoJuWa1e+XiKvdChO4sctID77eYM3pL2b3OaAFqg3mINwUO35jNM LhSrm3HQyZHYgwy6Ea6aIz6GA+XqEB/pet1bP2LMn65YXZFrq9hf/XIsORjNHfLvDyn960TX7Dh9 a2ObllRlTDBBXumu7tK+deAX6AjsgMUdzZZFzAOIvDuTzIdw0D4PF8kQSWMIN6vHFJqd3SfCwUMB 3uMkQuIarnMtyNswBf9jjAYOwLHly1d6ninf740wBVwJeQl2veQbiDDiNoMQqvj/GEyXpK9izEOS fH5Hmzld2tn3VCN+y60Om4q/WiSGVhPdQ/boJoUGSh1t6LQsLJxonymh50AzMXYLNtLb9ti/lH8T UHzCWDSqPn+nft3KhwZyMdV/Rgf25999oSKrORMX88H8rbk8Y1fGjbTyey/wOyHODaFrdsdgui4i rcAsI1zgVcKeo0ses3+etaU2Z/26FAwzCyt7Woe5ldcY+s/XAnikomOETzAU3ML1rFrVtELWn/01 c0dD+PAW3Ge210yivkA9gUwwST98CQgqSG8/WjhhoWmxwpPx4Bq4b0Cq+GvtSEXDQ2PpMLMC8IgJ kShu8T/9M5cSresxZ7OmzEF3vRCXJ1qtOAmKJjz76KfMq5htNWxgGX5dnLZXxaMgDThEEROzepxS fJMSFIvCilc4T26twsNmgUwkYD1VPCSqH96nxUQMi+6K0vtmiyCEtNxXJYJfNRkolKsgJ6fS7jCa qzPviB9rqwVkeeseYt9yovWIhdTxEn8q60EMOwVu1T99by0QZTOIDRP4OKhTQVj+SHl5amihId47 x2P1fv1e887LfiNMDteN4hHeBzPk4Awir02XzfGsOGUc3516HqKTtgQCkw6Vj6YOc2cZ4yHlsVou loraYC0XbJHrU6Jf4wWMHxt4I+yBSsptayxkf2tlpYTzTS8wUpSQLD0m9fp4bHEZu1yHOWmXWmqB Obpb8PCkaoxg4dwN24d31sT6KwdP8GpcyP/iWOjHi+VJDwDG8OzsTLLmChadzHow5G9BBwGN+EAz +oH67FOTxzFt4MKU9cGHm/3wDhD4BCTe/yygWd7wOf7BrZQmKzrMWsJKtnSlOdjCei2j+9wodUeH k3s+ybrWqMYtkUXCtEeJLyNX18C/Ix8GHZ0QJ8No+Oy+Inzt4Z+o/O4pGoEPLBpC9n8L48S7fGlk 021kmG/ncDk+lZXSeCYXdOc6yxDqBlE3olu8KwVv9wTQ/YSTFIAnAXGAWJU4QTIiQ3umXz1JLlh9 JxqrK3OxEMgyIDN5zxCEmcG4ehFu+fgPRprFCCPPxBQc0/fAnygc7Wo0zMm+MtFBWp5VLvp1xKIc +Cg034owwRaRnHTxEtntOSKOlqTRvOkGyoI5Nt3R/oUGfZV4X6VSK+zb+IDetIt8zsD+N+Nc1p56 7TW9Y00RPCvt3RA+thjiGLGwGQsVcFiGx9AlPepijORAMY8hLmepJwHjdKL5cGxQVp98aK0R5pFW 1XRZMVWVOhixSmrHwXi/N6GvGVkxyjAQetlqIA9iuoqwSDbd90LRL4q/Z4/L+YxDcvKoeqHnwogr +xV9uuNpke6uMTU5wKXbzaaZ9l4789mZfC6HUjML1FWXUXd42uYjBGVvIt5MS6GZYIoOK0HBMlq7 s68If18r7SxeJH7fKjlTKEAhEVjpbhmEog8pHTUaqzm173dUH3C6kgE72A3kkWlwua+s5TEYgE/O 0M+AobFHJYeLwv/AJd2Gp14PucQJclLERxhLGfpTvEa+rg67Zz+bcj7mLZbWdF0p9G2DXI2XDTet Xsrwhp+JqcfdS7U2JWfR4XaSyKwkLw91n0FX9AQj4i4QSJhhXI6+0br4pNHNo+wtkXB9MgNX+bQU G8e2B1oInFsQjg49GmMcqar5v5gbBsrEF30vDPbcMS4JgsiB9pCPsZgAtXuV0O7kM63AXj3D5gc1 97LQDE375B7wZ8oDcEcyWxz+DJI8jELUqycEx5e0Su35TIH0xcsViWTKc5PQpQ5tQ1uWzVIXOwfK RdVF+hHG3tr+2T3HSMncaGIRjVoR6CafDslWNJOwQJjJvjeIU7KdzI4J8se76dmtCcFE3XFXgi1T M3AjSlad7uZrJHxP/3eSx1YhAASiK//O/9GQHsNae2J9TkwyxOp4RJkosThid4fFz88qAV6wMLUH +BgZwEjPVPkjIdWep77tgZTi0L32946AfUAY+mxt2LLTjx17Zll5MVvkAwPILlKtJyPUouDVAJdF D36RIUk6Nb2/+fDNEfxXVvbKKUm+qgwKoqTDlYPTCkHBGxOGdxAoQdCWuH4wzMp51TSN4QDTtTbF TDH46pHq5N10T9dEijm6Atk3VPPRE/D9+GNXciAg3wvOz8IYNB4gUJcYeGz/U/8m22WkRQXUhDxd Lm2dGUTMdAwSaHdt+F8htAC16AvExa4N6tdp6RQFyGxhdj8mLFF4pJy0cXqnVOBW0xny2VXfj3Wm mMnK/YsCpPrUJ6Mec4OTVaJQwyGZDR1lSe9jUTP6lS5oIPu5uRSIn+o9MzCNGdeT+11VRN+6sn6P yUhTLQcoAfq6g+R5KlFbU+IVByXwRapUwzGlyEFyEptcZC3U4pWb+UwH8lahjoIV67hS8U2v2FyJ hxvr6GiqlEF4mrcERltmUAABenmkEx3ToVVAKMuom7BHWfJWA3rw7oVfFh8Q50PKRYmDvJt8aBkR vQlq1YZ92JQ4uPKmj5MMLA5s5PBvsgULo3Gw0+ysk3oUnCTR/Ow6mlM7IuYK7Fxo5pgepW7A1kw8 ZnlIbXqxMXrC8Ua7uX4VZf0YZfm9PM4BezdQF6G4V1hWt2w2rpWOx56j9fKdLNKQj5IrHUWjAM33 OBP+94hsYilurJSoc637Uy0fUe4Aig5snxh3CF4mN4gILigmKJXRMimAZ+HbHO7odns6sX/ln6kK 3UFrYfooMeNjZr7thoqx35V21nZpX8jCCsRF2MZ3W3PCYYnaNnm1M7JPU4JsEK1YUuNYmx8QWHdL dIDzoveh2iGaWaOZZMZjJKdPM3kmYkdRaWX+zK0CufculrrrviL7vTkfjd1qonQC3cweCBAuolLk NjFeR6blpBqnpnm32YTMkT4YVs7KjSka5qXLRsu0YduqA0+CsXpyiR4A9LptyVbr6zAHJjiGmtW9 hs+uvH6lfypBoe9H6Tm4x9xMxE/LkAomYmp9GqFKjErLe0zffoqw5R9crzXAUBqhRk+PkJk9e1ZA a/XlKqnQq4ZHnb1A+rLxy16NfpHQ387qElsnNpE/kJahlPSulqsigjjY4PDpUerPkuJuZ7VQciMj 8Ea4PqUbSWRN/n66j2e0pKh1UU0IdCk/90+ReTvFnmUbLrQLk3BuNbUESC3oY6Adduqc2mTiFDfV g2R2GzXK/v/MV66su4k027mBGYod5VWo+Gg8rVmPovGDOlrROuHc5zmDpv/qpcBMwd95GtkrFMKt OIYsBQcuWNIRoo0toe7sWAwfyCkIPKxhwC2ces3z4MT+ehX/cqQl77aJ7cmg/LFgmoPF8gDg5d2A cqOo6thwuMDsGaUPxQEZ6gUgWwy/vcXrrN69x4IbVmJHayVHfFIeakVjEnUe+dxyEcOGMXizfCat arUQyUBlKV2FTwLiwlsX+BMsJ+32V83hQU+dmcvyceWH/NYePnAiKZbyEwj64/djXtkOEeHtQ+5D 5sjqa4nfzx2C0G9KyNugYJ54ihw17EH132jFHJS73CrGGsbbvfbcReJrDsAqP14ET0P/u31lPV8H BBa6wClvGQz6gNUGpH9iWmsfUyxoy84peEV+sQhoHs5+y4e8uWMIneopVBSLbVweAqgbXwMS4wA7 Og36VqUzHQy8aK5dNX93Bi5dyiUi7ruLjFufavOFR3UTKG3KzH7XgnTZG0pPYaE+LrXEaT+ok+uJ aUlZApQgOWYBZW5Pw+ndld6biE97ZGI3u3KyA+DL61dmlMpBxOLqy+QU14q89JsBxoIUfs3+O1/E ZOwwTBSABRQB11xmEsRLb5ICWmJvKu4jbGIXo1AOXR3qVHAWz2q3AzEo0pz2iY4HoKufpUJHZ9lx 8GvlQsN9Lmvy3IWBJQJ1ptRk3PziWmVYLjG0lTztC4gyMzOhexR9Kuj11rVx+AcEK3Th9Gt4G9Lj mpYTUBvqIcm1mFD713NI0KfwSfxoi3+FIR19y36QDByL9zfFi9FeRHpontATJg5glCCbUMIr8WnI llSTOmiDT54tKXOJV+9B4zkF8pWhdAUeCYu+OWyDlXgt1rF4+hGo/CiIoy8SvS2q2aS0c2sbUkza jZh1YaLH5nbkBwxDv3SXUYlgq/sgZ1WaWkmco7ZGFRH5WayCniNhaWhSzlkltcgYCpFbcukTbP4f Ss7ZvEXu725VF6dUZUPPWax+LqHIyNLVxK4EUqhlxHSzF1/C+D/oweieYU2VEk/u31pG9h+qwdKH xxJJcSmz7OqDi/S8vdA2zhDQbqSFpNIWhcdRmwxU1nO0eSKFmK4kI/ykUP0aGmYeA+gklpACqzWC ApS+6eThD8efXez4doEHOeeooDHz3n9mtnBEoNRf5gbbQBy6eVSOXMIQnBfr9PD97WhQ/NoKY9Qu ZMOftw2ZZXiNxtkIpqiuD0cPKpzxQSHsm89EQ0OauUy87dajrptD3k5d5kLhu180LXe6SS0tgJcx Bxy16Oj/PHWp+iD0+KFFH7sKwN5r2sI4fPCIgw02jaoNf/LJgakGs9cU93Wvu+w1R6aYuoPtguj9 LH+Po9fDUa+ZoDlI6XABuHx/oogpWqXCqiuH/+17inANkDA2xbkwo8ZuYQ+fszxYwL3jjYcGkQOE oX9mAf7SeZ1ilPNV9I9QANTC/6rsIUTE0Gytpu+2aZpgIUrbTz7XrYdlUVSVvvqfpgu5KakVyzdf K5hWZQiVhvxfYvzbcTPeU1z+D4czJplDBBm0iGbRBWL0llRXGU5eXWv06bkJEFayw7ETq29E8p0r gNtfFuwpegtXLQ/7o8w7xq3rUsOIk1n56pbo63fvJU/7I1KNUrktb7+rPCbS2uBdTxD1oqYgs3X+ JNFqknKNG4lkYMomNA1SUbJjOMbszOndF4ll6sqa/QwHzKFx3ykxXvHoF8z9KBTL7ZPIyB7ZP/HV +miv56hrU1LZK9yoa/Q2UxWO5E98vZiALtTuzRoKHh3HHjtixODf9tWtPOZifNfvRNkbasBIa7jH WCtzhk0Umbl0AKSToRXDTYtjcL3dUaAi2+vLL6aWpzhBtxukM0YdLfcqatmO/FDQsV65RDKTeVY0 werBx2vd9j/t0+7ZU6d29xnAyt0h2NG0mcZqg383Yx40r3P//k7P+hSot+q98eNoRvs0PndYYuht 38gWtVaZ3k+DoRdQeFgxP03gvXCpIcklKWZ3sIossC8YGSLKhbTNIRU1ctpLvwPSywGRG8yYsnWL EXaOl2Ul59268Sdkvje0n/PbkY+7/Oid4n+3pyC0+HGQUMwx7o9V1XK9PK5C7A/JysKwrx8p5zd5 Y36YEN4177DBvuaN06qZy9Q26tHr9uFZj8n9o/ysXckZXUIwZF7trArwV2XxljGRAa+G4i7++fa6 98/iZpD85MqaWyP6jHSIikXDpqQskbu25C7ImoURzsa+1628AusdrYuGQrzPXD6bnW9EW2Bcx1Wm wZXnQPcqomYvRKkEDpky1TOSzAvy9a3oxxZEnPWnEFckqqiBjx4ioZYn8vVnMjX3RwKp4cH7pmK4 3yewUNJ0N9mMk2cbZ4u+Ug3HXfHpF62IP4Q7S1Xkkf7N41D0c9wMMjcP7VGyYymhUd3Pm1vw+LYi KgtFW/E+sHplHkIAyYiqN9yLNaZbvW1b8Hpn8ZfhPxLnRYHlzybPIPfBFH+OWy85o9pMZRosrrQA zCYfayCYxvccZk3K+l3/FD7LRbm+VGzXv/eX0i3QK0mUyWinBhBhfx4CYpXXOMcf5vrWoSDP5LuP MtBPCKXFsnRhjzMFU8XCrzZYURRl9zNl+Ue22RnadcEsavSfazNm06R2cN7SsflO1Q+NIsSuXRJo HVszQ83s+iWbqJpxFPhC/TFqNWb5SKzm1+YMts7z5rfzI06J0KLU1w/VKRuNPEgkMK80KavZLwiu jezCA+7nXCkjjlvTw9DNoJpzMhYEnc29320/adjmJTob4dhnYDMTnSIFvRiRyveYdsVVHC20NKDC DISr/qlCMUzIxBm/TJp43oPA+v0cBJZ9o/2SRQWClLEi8y9eopcxNhGbiG72xCbCkMvkgXFsiV4V jGENzR7DjeO8UxsKSPj4wpdbmIYrsNMOzqTgyxhOZncpHcXOc2K9PqTgkAgvVBqlDEF5tQ2un6Uq 6iV/SpLx1ptGfW9GOnKO2bT5J0diC8bpGalBKP6fZiwFI5VAl9ts6kdLY69pgOOkMv/OJ/aMiCmr 8ZQ3xUyuZIxf6zu+LfVnYMiZDX1wzOLRaMKpwDdiRvxR59d0umH6Jac0qB5+RSldvvdCOKNEQYtM ilGe7Lb7+dgbBlHBzYfMgXDWutNPxyftsJfosNLoz3IOpPHJOPxTdnwFp1tg4DJV3+RQ3piDLqnG 76y/sW5PdvjIGcx6TTi3VupWD4G7FrEmhcLpZDYJxzD5eVeVayiLazl72yIYdZxaMUlIa5mJoIGM z/C6v68OpX6JYI95C9aKidx+e7HaViY6cu8h18bYQm2HoyBnMOkjaphmCtXbsXkApfHgjqbJsPzz Bc0CX1ibptyvNRQsHXLutd1x0OmICCpe1UO1hN4b0eUcZpZQ0axt645Tvbfmk3V+PWWgakVPRKvP RrKEXQyZLVwqfVBAgErlr5VI8U8fcMJiPqd7TAHCDW6GA24AXj4mmka0oZt63P61jGHZiIaoOQbp sR7lnzR4CL/FlCOl2ObeHiwTOzhJ7bK6iXThKpUEvGIPpjan+oOmYsSdqiJarDFVhBNcef89nt85 N7nQZNJn/YOuHIoCQ3OrxiEKC94FnvyxS/nCjsMqSKRmvRFl/qk9o+1c35bg+zpJ3fkwde8tnLPr SWdCfglHm91u5XYDzNKGeKUWT9sHIwhrr/8a1AEazj+pQtE5ww2ZcUxvSP3GRznJlN289nKM8jht mW49rWzz+eZ0TJDTaMuzvh4nPIjw0YRtdzyF2CKF/iYxxqkluskEXY6tpZHuFaCCgnyCy+zkqIFh BbpzI/bI2DTshBvtZJLlk8F0Q9GkDUIBcj7a7ao3hdFqsCKzH+JMUIxLLzmG1m/gaU2G4Y1+zvHh jO66RRgjrkeRgg+lNi47sVPUZIhrgTtiMQ6hOF07W8ZzsuD7BtBdEk2hc8i6XTSYRvMT2LVnlViB b2cVf+4+Qox3RWoWXBeeKq2Yxrcv+Sp4Tb7i1Xc0/iTf84gAADivSlliPwPaHUFvSVwkJQKMwMBt /Ii0kMQRHImuaq73WgRT1IzEFGC9h1/O+RqRUq7XqIMpSAuvRwCdRGKqf6rsfAOZTdp4IovlZR6l WjZxkx2DbfDkuMx23bmnktKa3/WZWymk9s5DMhofzFRuGtORq7abXHpOvR4NTGkZBIqj4NjxwCX1 DhC0+R+9U0xHGZbKgoF7503yE+dF4rNWQsVhQB0az/lPYhDPrM/1khzSHB+iu/LptB5rGQ/fxl8S ix1LaKleCOF78wgO+T70P1bw/+3HKAeUZSX1GyM6d4Sb3xV7F2xfenFQ8mFg318/gJj+vIvK2D/u e4HhZsYjfOocsNTkcU6Pryc3Mbe8Hic0CHuJYSM6ruxJbzlO7wty0uP/LoU8hHq3KhrYNY4yhIB2 o+I5kuqaxDig5f2/0vOj2/r4ATYyuYsrj83z1XJyduuzYPiOxaU61RI/VPiZxakvUblwcc7/itx6 lNZDBr+1s3oJeuDh9J/tRM8Bmw0Lkz0CRf30e/r+vacOErxu1lAEOoWfix+QQ3Ptj5lgHENpfVDF 3gTA5Zk93UIc5/aF4qKsUDTXRmLhweRjKtEyieqjN8DyzOgBGSZbpVxRnTMXwAzzqAmkTzVjC4sM Avbn2G8zCLHCejco7zFDgUoifDAuTn4nPodf67s1rgnbHmE/dFCQySbWZFgDB4Z48x9U8B6sCOHm mreu+dV+8L9Derb0/jYDS7tah/TnlPqtkP4r0hMGS0jkd3ba5C5nn5j+GXhmidyMQjtQAAhS6LZO 1k4OZFFWDdF6mI2GIoqJnA7tMM2GyvDxVFLRy/msi/r+SNvhA+GB/1mpbWW7slWhS9nLgUuDY9Cr Yb8AaQLZfujWpcp+BXtuZogvX0TEifm+Fj5pu90mcBRh9xp80DjqC0VeeFAVAXtWjKavTTo49oML GD59cGg8PLIP3RMjyTf7rLcrDaKvUJB4+P+8IwQPgmNHNW6yt/9NVr/R49cQkS0x2qYwWVWpclwJ DkQxfaBkASANIYbvMUgGzdADtnGUB9OXBbn3MjHTLn2XEwP0J2nWSyBdiz0eNtCwuQm6aebErF7k Rofr+3DzGRuDzVlCO0WII8rgeka762oYM1Pic/8jmY33ziZZ4vBCS0ZKveicfowr6NIFEqaAC5fT mkntexmmBzJuiZsi3TRWeQ1lbmRzdHJlYW0NZW5kb2JqDTcgMCBvYmoNPDwgDS9UeXBlIC9QYWdl IA0vUGFyZW50IDE4IDAgUiANL1Jlc291cmNlcyA4IDAgUiANL0NvbnRlbnRzIDkgMCBSIA0vTWVk aWFCb3ggWyAwIDAgNjEyIDc5MiBdIA0vQ3JvcEJveCBbIDAgMCA2MTIgNzkyIF0gDS9Sb3RhdGUg MCANPj4gDWVuZG9iag04IDAgb2JqDTw8IA0vUHJvY1NldCBbIC9QREYgL1RleHQgXSANL0ZvbnQg PDwgL0YzIDI1IDAgUiAvRjUgMTMgMCBSIC9GNyAxNCAwIFIgL0Y5IDE1IDAgUiA+PiANL0V4dEdT dGF0ZSA8PCAvR1MxIDI4IDAgUiA+PiANPj4gDWVuZG9iag05IDAgb2JqDTw8IC9MZW5ndGggNzI1 NSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PiANc3RyZWFtDQp4K5e3QPIsOzaNziAdG8+U/ll1+/6K YkfzB4nE9tqq+tz5Lsu8hHQCv5LjAjodJfc4Rf0Pf54p7uFbV9TfCs+usM1F5VyHAzi7QOSL3dtx MLJb5W4xQW7GC3OD69qL8ShJUEADsbMShqzfw3Meuq7smIC7Ohl1HxtE81ACQmulcjwjQVIqSyJZ +aPKMv56zzVc1EJk8Xgt8RAF3nUFJyGJeJ1wQltRjHrPkDcSRj8MP17rWVoIKSBLZz+fEmVqlGgx KzY+nZBC6tOFrxI2tX7ZYZzgr5ueqOSKHrGATyvhq5MbzEDFABMiLeAJbEoeHQP+J4E48CYnx7tb yY4ht0DLnoHGrlPyD2XYK5Xhpe4j74Slwl3UmccwrqZK1ljfUZuT/bsBlIkQ/rcPUCwgen4idVJq N9K5DNJDI9/HQx/EdcykzK22vVTQawxJayAfT3Pi4mZ1Sxh22V0Yzh3IUPIQcVLnzDtbx+Dk0WbR HHZgqK4KEhHwMm4y/urUt/s3RzA+V1UdN1Nfabyb+RFJHPNJpcSnQvqYL74HPbBsTmwba8jtP6r/ na1GO9zLdMMi73mfjZx4AAxQ11UXspT4XJe2GI5vsXDlkE66PZlJcrf4IzuqtReKF8GvrOPoNgH5 8nkzZs5I1zEBukZrTYyQTAIwElsIynGRtEDFS/I3/wwIBLebPW/ckSI3pSG0bl86GNsqPvBt/NOC 2zMiuI3OKSl9EyE93tQy7A4wtG0VF6gFACOCWKL2oa/o20dLcoobZwnthzfpM3/BA5aGAIS0daMm ubatHsQ4yIJB08EGLZe4h+cjL4it+g/oFPskgR7v+vbhv/T13iU9BBgHrtSdWIGUfo5Ri+RoJQ3j POiWDkZY/Pe22yLl5TldU1WgDBhiyJcZnYdPM5Tph1XYc5YJ6wyzdjJpfAzE4gUFqV0ebVLDzlk2 zpFEq7P7ROAFvqosI8vI5G7TYyJzCHJiv+Vmz/Kp/TOYSamjNOTGiigdQ6yHdkkOYQK7d6HqAtLz wndattrVwqEi2b9Ts9ID1mKrAGbFBv6DtyzOi5BNoYjopSzgeDPmokhA4b1yDdihb3w7uaAOrDh6 oQMPH1jp2X6cqG/BVgUQ1uK7jHrq01eOpFiB+YxWBL0ZoSl+rHB5yKt2CC7Xt0ZZ1qTlDg9cE0Ve CxrwSs+9QGq4gSP7smdYPiCJhwiK/S4eEtP0IvOXZg1GCdNZL6oLvIKmaIuCwY8uoFtVA72TKODd aS54wLIBIOLDnh9FuQLmNFFv96LK62RM1egWLr+VGFwRJ76rPM4G1YZxKfm3Q32exMb9mFx79frm 3E7nPn/9bH5yA4+ujqoRTWCm02taldHpeWm8aWpWTyQYJuu0fXmuuxG6Ke+4K9olmowYBMkKkitS fz1TvneMS8EZ5Xu+cLAgJ8WkgpvCMtyecdtgn6+loF5+t8Kl+xkWDvtFzOwAG3t22hcUW2jsH4fu hisAOieorEi82Ys76Ro989oDvY+2oc4g2qzFKDtIP4ikWdiHOthPB8p/PkVRpvrBwbcXko8Mudtf BtLglv2+gKE8LV4ux4wF7+XRCfl7RLm1nCh1uvldEX3XkpL/so9U3jXZ0jN8mCgr9Mk/AVTNhjW9 hjopuBvcMbWkS/RUIEjEKWpA+OlpefKY+I3wuVRcXDgoVY3vOn5CTWStmesSf06EAUfpifaHcjLD 4Z2JKob4OBneXwUdYtNU56vnAAOBRVsFTKg7r6+uorD67BIygqZotEl7By07CLocOYmGs5yvpFPe FlpXt6CzuVNPhUgb+DBCPkLSmozi+oh++kYYA31/rrLwquT0e8uPbQQuJhD0PHH5mF+A06d/nRke KUetxEWR0WZmFbmrpuXet/HBkn3AOw8OEH8is6pFUzbCdyewEfKL4GLqaMgwqlXGqWr34VdHRH+v IAfKevoXDqqeiu5+2t7vg8ljom6J/giy3OwJNXW9XOqHzUpyOT/QfDnByotZOKYIBGH+F5xxbMXB XwJvlUlV5hH1Y+YrEGaxGloHB5rVZbTE3nIvyVe2h5NcDGR8Ybq7GDAw566SJRdYctbnXX5fynxp uWlYj2KTDBCYIlqqcciLficQfFea//4eH5/+4fRXZMGfXBDPVzFScyA0ut8d3I1GX+iMUqZu1j0T Mx/yYuW9LtPpRp3d0n5Jn6n+fAXw6Pd72idEgvC9JV90zgnRGeObiu3S6xy+WgpxDH5Y5nRwIy8i /Avq/faDGIt2y/YdAb+7lQj0AzVrOC0vPemvhOdO2F67CHQCpEbq3ib4Jyuu+XDz/hlxti5Cheg1 Kk7vvskunPTGItU5bu/p5Wm8Ujb3TO4rZsgJ/OS2xEwdXGvXkNmSYpu9QwugiU1uUhT41655ha4o S31/jiDafx64ZRKaJyNF+W2CZF6qD/9sXWawziVq3/L40n9fzKvbs9xxxKcLt2i+yaPUthlIMvXE 8x1xQEGc7Ti60TIh3pf+OFrAqjKTS4T4yZkZC1XjvA+f8su5ykPYrFD/wC8xh5q3yOelALKatvDG LOfM722+sLoUL4tL8+K+samexsf6sONNgGupY/StXzOCWi1jM6CfDVX4jH4rPrZn77f50sd4HP7/ l3Ndj7SUSQ1bxKZp1lm0QjtMAY+Z/Oza+r5rjJNhziD0m8JoRd2c7oUQsjRXwjJwd60PmYF2LaZi TWQyJOwRZ/PtbwUmA6jzxjl8nUsCzl2JaUhgKj3pLS2npbCe7msVKFai3/yAPiIJxdYb6XeyjGN7 GR7QMDQio32dO3HLS0afaM4P9ocPYErnJHmKBpWUjfk4gReTmsBXUv+/WNbikRI3vihcnkyjK4VW fTGa/SIYh7MRGP08JmhTrDpbOf/kSL5GmxPwlpvU4l+zoCqUwHuGUaC8TRDoQ1rhEfUQbLwFLhM7 6QH7MWCJkHOqA5tdUXAuLtA/hPN2bu4QbNUGeZ+kc4W4wsRra2DYagj2GH8BKqtVJC5h7kNd/1dP h/TFth4/40wpIKye5rEf2SKVN7V3AhreKQiJRY/MNTWcTvIRsRAPJJHV9GzXPG1USPZWuJf0r594 6RLHeb8HD+XyVQgJFSDSOr8nCgnYHFwu7JtLwgp8DQskwJgl8BRdNY5Rg+AbzD3qg/leltNod5Ks sKkmaN7/rPCrdTpWdFYx7y8EwKfprKLGMFEHQdqY/r66d8vTZ8ncnrscu26CvEWfgy6FsDbNlJy8 k5PH03y4PAEaqa6ZMReV2kwypeHGFvh0qInBWRcFHL1WkiOv/2xm+YmBaQkEMm825FcRPCt3pSaW 9yJNZWZJK7FK2B8y6hgMuk42kuQpeOIIg2vf2DFRTxc83LSgUhWvq6tYfZI2iFi3/WU81F44m4sK awg1fyHjVj9A4q7XAjRqs8BRdsu9Mc+IoCoB9IymlyT/RYTNpfVVRtRzI+Y0hKCdcTp2hmqu5THG d8u+iHarG3uzs8AkTj1vRHMyZ2p9ay+FQEtqFisENym4dWTeGiX/9pXPVkEZOLuC6CD9pSSUquyV zwmVkaKRY+nSAF0jRuv28hIcirNBGL0JulEGEMJE6riNsOPKhbfUMbX2Xw0ITI4WKzmEpjVUINNb BAh6CTU5OKmlKcZN3eOC69JUoiWawDtgADQdyMFskhI619LXH05/hqB3TQhJCIV4e0UeJ8u5ST45 hJVbAmsLKqU7v2a6SkGiKxN4cXZaaLttpQ4NgGkcTw9nNkZ1Bi9F3/f8Z1AyWPI1l+iJ4n9LGYFM BidgjBSKt/x1ohwW5u/etmv8OA2r05/N7XOg7aNuiV91nYiL9d00o8CHNW5STpSYMuuHtBr01YsI II1JuJVtuhoCW1ulEGWEoGbYo/90zUxQgxjX3a5DCVvHG2eBma2R0mOoLkgw4xqLJRKXr4D6IUTT 0pfYQNmZ3L6DhhVVvvPa0Y+wscKmcdNQRczEwF7hVhfQZpFSM+8/E21AuhlQ+iVviDGt6L8xtqUN iQ30KT5tATifUuWsWpg7Y2Mi7v//3s3pfci4wATVPS4BSyEJKIn4FulqoLQQ71eGx1+M0C8ls2mL B/JSzaVMK53hThGaEq+Hr+W76nomOHK16rcQiIRTtPd/s7OCCmW6uCKERMVK1QdtQZTzvUiSC75x ySvAPSw/VxrWMzS0mhdkfpNwSMAqPvZx+OJ6plEXxIFiT+kmGhrSknmVvyJVKNZkuQAd8iamK2jO Oo0jHlmXT1aqoxD/SDE2yt0lS7Bqx/rokdiQYqEuUWE0n+bhw3+GDydrZalhcNDzkGNzXlP/azcE XAaziybOwPDXqishtTAgjNFO9A+rwlLlPeRpNuTnd7mLMVsIcoreZPINwGhZZmmzy+hhl/lLQCGP QXykL5kxLf77rGAh2Gr5FOJfhfJOcfufUBlZl1d6KJ6U/8BCiKOnXwGmPh+V6wj3Skwl4sk23kWH yNRKJ6B1SV6/Z0SJ7+ygwo3Pga48KfdGyVVI9xDNEU/bgyGj28An3I8qfWfjvmzjy/iO4Ywe29Wp HNrclsE5JLPGVw0cc2CQP+1Y9j7Al1oQkPHtrHfky1Ck23y9LSI/Hl3v6O1vx1mM06bfN2dw5gCA v1XrfgSZSrwue9dPGfT1OOSX60VUxzOWhY4xD++qLG30HKqLpQre45HIyP8gAAxqUG/QRb/4s77Q VmvqZaGdQ0rm8RSeN0SNFDix5G40CxYF7M55UPrszNcYsoon+9ADKLFoycSkrbzmn3Q2Ojlmit8T ILdqR/HcjPXGZg3zUoWqJsLW0ZHorI9uvZidC4xcflP86707I/DhkoYJTdZSjY/tEQqyNVTSi8dY QtHNWTYcqQw2Imy+6phlFwGrbg+XZVC2z4nEmK+64tL7kZFwcXquV7JtRInCFsMA5yguYBQblbce zjCxx+eCVWhaJTj6dnuldCcYF/dyFFCo16zHUxuOffPQwXoauQ4MMLbuJh7wuNq+AfTZTjvjIPNp 4BuNRNwbuCkj2BP5gUNPr/6OyF32+Nu5jNNtmwP9rOf9T2lvc/qXHIx6SEgldLrdEfgj3etJDTgE QWiMOQHkzhkAGzRHS9GbrUQlwXUhtvIEhtvAqIJ58bjET+hnvygjlwY8smiQJTCCf6C97xsvgX0D o4HeF8qSye1OoX0CcMEUS2RNmnzsRdOoVT3RacAgxyvVZ+YPP2oQX0Ia+ttzwbFOfsgh8HlytcNU p5ZOD+urAgekxdJUAauuTSx0vp+HgqyZWoAxiEyyJn22fRDasfgfzlQvteP8F2XKBLm19o2pFlGO iZHNlPwoPg9qmx/XpX2VRyJs1fnJo9577poiOcCBZX2F4BMV+DMkbarTBdLrh7To9btJOWJ/3rAu LUXp4NA3pwq7T6RX7n0pz1vzWC2sWbN+2gQYbZw9uZdcRAO2fLYrz91vqtme64OJkF1ecyfAg6Ju rNOe32d44pTHHrxYcAN6Ti876g9JVRH8OD/LvfHu3fHUaR5psMxgUBdRT0ySBLOGO5LTgqlv6Lej wRd8yfZudrwoBi7fAkwbD52SBuQzoVUv+/8z1uD46LOAHDW01HHatycMoULd+ftWA5MLSxcA/psR te5G0r6+7/zJ8E+Oyt4YgP+VbOM2RdzVh9rT1XLXwGK71do15evotr6avmIGOcvS4kX8eGP2kPiX BAXwK32s+z9HkRUAF8InBQ/z68nnYtny0VZ0JgVqepWnvvoR8J52HOf+/nJ8qwnaC/Gz1buA5lpX rve+cfo7TAHpQ7KJ3nZpbKfRQy7jLrRK2i37LizPD3ovteLbbiIrI9LY4nA1Luaxj+8yaxpQt7Kw 6869JKFxI3wiWxrwtNhInqZ+o5IQO6YTpfrh645M79iXHl7i/cjUFwFnQh8VTtpNThmi7mBIK9Dm Flygaz5MuAOlIqXTO6o5eMEcIqBpm70fmWEcCkWDVNcYJOYFYutKvUNJaw8/pNfFWaM5qLcd0aMM qTQMaFm4tKwkKyu9aF8Vjgsi9igDLBltfjFbZb4RLCJ6VOqWiCgKTJ2cZdNqYeU0h/JHk3kIlZJ3 TCBBNN7/kjqivYBvwfMgFQUH7jvvjZ7RS7EfJKPvxu6orUFInWpsEnTnO8vh46jjrs/vXjZdPmKA dj5lOZqlicpGozWLIxWRXS0Cz36WJlWf36/mUEvasgsv8afm+RzQb8LXRjiJuKXpg4I7879lf6ES zHma1am7cSOSuRDXec8iyJ6ozDhSbBTEhx4t9CD9SPf+qm11UxewiwyG9mI46t+1oNVGBA/VFGaF SVVltTlz1HPHwdUpSzlw5HKziNXoxJpyuwADoI/WXP+mr3gk7FiXRZ7lSeF5b0NJOmquoxyynP85 DW9GXltV0yOLTEX787AfE+Wqti+Cch+UKoPYAKFyBYQOVxbtETRR9qEdZN1n4cMzSVMZVFyFj8vw gRgLHuKCK+Dpu1SGViCNj/90kG7dQ8ek/01KCRTq03hPwlLIHfJJGRQ0KkA0vNdDtbFMHHu0RbOL 3vVVRhNnicyl/VqRMoCaqnxBka3nM4Gbks8aqUfWolZUYkR6aA5zJ0B8/MMKVNU7I+WaFB/+JTRw rOk7lcaPdznw0xGKq/NgTkYxukqcUlERXwMF0h2nWg8ZByIL7UhFlNr7i1MjW0Onp5dw9X6wKuhP sIPzSYI8GmHwYO64zc37O4Wgo5FCxXIjopsDJSDivT9eTR7qe1LA5ccf7Fd6X9lkVQrtBNb7RL0m iz+GQrxL/tW97diOb66RhS1GXYA1S0AmCj0cEx5Aho2RTG8SuyDXLmSiOaJKJbX9PVBYQgOMNaYl rF78M2Oa8t5MK4vDclhZn7qwcfO0L+bb7YPXqrDsMnnwMNJw4Id8fkGDGFpCgWTfW3+yMBRwaYO/ 4G2DHAKmijfuZlgJWImqKCP47SbeDValrzlAs/5hmX/RoA1z8a80G20ALw6IF2UtK6SchO6KeyaX YhqxTD7txCalI2Aii+2AdVve9e5lYwVnON2X7dOpPYcqC7Gdr3cxdhiQv0OX0jojYz27TYYhGc8L i1aPAvHRT5fA2sKJg7Xd184cQGg6RAUsAHm/oHkeM68S1570kLDB2IF7+iWAwdOfKCxMyDrP6qNd z9NcE8Oddu5ktsKMeliO1RiPWNtsmFpBu0vBFAYTcRLqWs8LMnYxu2grcRpC2wO7raFsibTR79Nl r+ZRGBLULThOCgFwcxjluH+19kX4LdUB132hZkHWmV3aB6PWRMYG2XQItJh+l2j8/mWn9rz+YNZE 4956j9wokYp51lD4gqZoVwu6VmM91pE4aHwX5WY2KzMyH9C7HDK7B61ayYK6N2GfGF5XjuSeQ/tV uUQZUQB3I+dMxkO3PQM5ORGPgPRjvDyMgfufVMH+34Yp3EA/It12whyPc0JIix3xqVYMLiiWxnrD 7hOw9Zte3BgvI+xrSGqlqV5odkIy1hJ5QK8NByMPaQl6XRYGB/gCleMVuW6ZAmSw+eKpqz4J+Pe+ ZiCTKneHRomNTiwcTrFWXO8YpWcS8MggYgFDcUxzKav5KkG9Em9scMYJ8IJNQp5/EEUU/gjLmuXO A/Ngz/71or6WUYJyBWWi37EZre6VvsHQYhPmkqYNoEjKadzm2m8ESym2Ehb4izOzRpVgM/LfIhb1 4p+NHBlDJWzBMtgS4O2GTLXGinpGZe/3sKx+i8sKXkwi198HucJd8+Bvksb7HH6HFK4RkJ9tJ8D7 mnLITfb6Fp5LcLEXTGscBKqX3unGgrhyKkElmeN3b6pMc5weCMTRVnVKFi3N6j3rGCBnHcE7MXPi GzSv+cxnV236ErRp/BcYFPceQXb78wuGDlV9J+szJ0yc64p236BzO4JEs3p361f9GPZvmHjQZyrz 62cibmz4twYxNWNKftLZ3qvehS25Z66s89xBiuDfx11YA8XQ4EN7B1IGfMPeS2FFN1oxsoMDbnLM YXTx6Vpz5asAogWNiPtNc07PS+28Xh/G9i+7OlPSDYLQhR07p6ikgz9yyEd1Mr7l5jEaARfdqfav Sof9Lt94lZj/mAfS5YoOwRmPr8MfZnSN6v3Ca4wknXu2PssTBv+aGTqGucwB4r3MIk6VbLm/dzQ/ SNVPThTnKK0E7D7Yv8TWu2GpGrax56grtqy3X3umDh5S8prGaDdzF7BwOTJ3H9hhHt9BfeI3D/Lt gt/REmmFzSl10xyewNWHRPLr+iKNA2pP1UZB2txObInfBabmqtcAdgZZJBjR6//93ywzB3UaxU70 lOJ/L40HnvmRERM4XkFBAoNdSbGSzBPWTgWygoK+QyWL5m1xqRU2k7n42eObok0XMyYalQTcdaVm q/UX0pT49+qaV9MjKkau4vpHZermhxGfhVPHlmQn9ofiV44V+wUvNRZeZChbA08K/BXOmPQeAozT 4RuFQFWaxWYJD2mpQOVKgQFYtWvobsVsvOCp90DDKd3+aHvW+b7wolYbXmcevToslPfrS7m54vtB yzAHEOB6vXObgCD7GYlZN3O4Zlq0HJwo8+mGOdsAAFM9jdbNR4i+rVcsGiwySrGHnNTpj1kTNzw3 W03bTJwIn4bYJV8nuwZzlX87WfryQqV0Z+wWQTttj1qqF7CDK6nT9YhOE1zatBCgTx5gYsjcBslq eaGFBnPHjImCUkKCjkgiP/qqyzRkV1zbspOMQ6MiSBnujKjJUlHLmI70EArvVTsolAODwLuDIpfH POsug+gbWF533X2+usIXMSl5JgLBzcL1uKU74j6G9Y1s/KjiM41oQNmo5vI03JQm6m5jXwIxiIAj 5qgxQUqopfbx1h/BTFz+f3pFgtFdHiFjat+C8/6G9Iirx7MMK86C2qW0lins2Ahuu7gWubm+cXy/ riMdS1Zc01SAD5FljhwXCa6SJOHh+7WT09FHN3L3gbQ3g/knEIb1O10e0V1PA4EXF3Vf02ebhjef wqleoPzitj0/yBfEiussbYFPp+AihaQ84qfkBrlpt4R7laI5/CpwFgmxPJIWE+CFWR/AaQfdXjE4 ehsPQHC+NiekNv0wDjmlh660pfAR+ERULzAQi7v5bwFJ0EA31gcwnsC1ng7VI9a8/Q/qCkLncy1e +m7IYqHQwSYSbXeXJnGcqT+hpOoJTDi0hsjjWQrtpJBJViCKwPtqssN7xAuwVUwhiteNzxpzmNLz P4lYN/jjrRRsQ2n4SkewwiMqlY48n12Ae8SIyis5MG1QLOyZThIy0v2+AxZajqO0Gx/a41W+CIWE hsKrDtxE8qh9zmg8FXyjZ0t+vbvcP5U7NobHmcunEdra2dqxEqMeYHFzOeHy29uLOdm6Q0yuNRe3 RRkQmz4+iwD5+GYs/wDZ+8RJhY0XZrt/R3RyPKqTI5H+3yTSWZi1OpPD6qtBesi7FKfpF5DQ/n04 W0RVmeWPfb2FdsBqyKb0ieju2P6QqW8NwKSqACuk4S1a1+YQEuKAQlabIFT2xbjZdrVhaprhb0s4 8HKK1/20FYj2QrBvJKmwfG0QCGK/OYq6sywV4h87jAqvQ4m4V5TqcsjwVusP4/k+u5bwZi8EqPWI LWg7uMZwRr8zTO+r0OtYsTjIBOV+xuXe4qI4ZxdEhjfBCcrNR+JYh2+3DgiwrUpo9RDWgWqQSvPC BiZkMt+LjulzqgOFwOmyk60gf11iEQxDqDRyK8r08PwoF0xZT46WMfZqttTFIQxv/VKlDWVuZHN0 cmVhbQ1lbmRvYmoNMTAgMCBvYmoNPDwgDS9UeXBlIC9QYWdlIA0vUGFyZW50IDE4IDAgUiANL1Jl c291cmNlcyAxMSAwIFIgDS9Db250ZW50cyAxMiAwIFIgDS9NZWRpYUJveCBbIDAgMCA2MTIgNzky IF0gDS9Dcm9wQm94IFsgMCAwIDYxMiA3OTIgXSANL1JvdGF0ZSAwIA0+PiANZW5kb2JqDTExIDAg b2JqDTw8IA0vUHJvY1NldCBbIC9QREYgL1RleHQgXSANL0ZvbnQgPDwgL0YzIDI1IDAgUiAvRjUg MTMgMCBSIC9GNyAxNCAwIFIgL0Y5IDE1IDAgUiA+PiANL0V4dEdTdGF0ZSA8PCAvR1MxIDI4IDAg UiA+PiANPj4gDWVuZG9iag0xMiAwIG9iag08PCAvTGVuZ3RoIDE3OTUgL0ZpbHRlciAvRmxhdGVE ZWNvZGUgPj4gDXN0cmVhbQ0KhGZ0jl/YMOF61EK3+cr4SAkfhGvpO48+m+iDH4bpln829zJpUqwa TnSa75BOEYcoa+8s5lvSZy/dws9iYzJ795FoQJQfuRUSR5nTDoyDG3X4ExQxeGK7I+bOcUSAxGhS omFvIeJ7f3iX9kld9UhZyYyywVj2VSVmIslFURoLbhTRxM1fX6F/Ay7mNt6HvSgTJRBVUZBHWbIB ucaOvooN/69mHl/TXsb385anIv1juO90vlKRNLRUwbGUJqUoz/FOYcauDgzbw5/DV8qL5F3lb87S nDBKurHyeMjsFua95WPwMLJdgQSR0whj9kHKRyEWaMO6nn/Zz4NJkitl+G+Wrn+DxvNsSzOYFYqj BcfbRpYCAg9OU/6Db5bhYf93buDxw9j6zkpxAK0GrPce3HfSxAo7ck+Y7bUl0hEGRej9TcI1HaEe zCrSYha3I/N5wdUd+owvmFW+oVGAurOO7qIsNDjEEJ5ux1KPqd7vRpuMGwUTBO6pIzGTdnG2O8w7 6dhSWR2eZ+ZFIsNbW1kbXTZDYTtFNoOEy01UfUCdiH+00ykCYaHre3nIlmAYg3YjCZtRk4tNy3Iy HZKNvsGSTOteMiy5PViLg2NWS7lRAUY4SbPZpWF8qz5cY7gb4dZTKkO05egODrV8O4+WVW33Kcjt 9eq6iB8EgsQwD/oWLIvC1F2m5svS8EfrgldDscURpFF2mcMJ5OukCPEQYMfSTvaq9CXCl2J2May1 xg7SeUqcs1Wb2ksykHqI4JztX2bSxVibRpq0fNBvTsfCtUwCBCZHMfGnTCEX8HbtaozWN9gD8LOo jCSS1GoiGsrskPaFQHIc+OZKApcw4Cl2QmHh+iY0Z2/JVfPBJz25c2S6fLMetiRw+Ny0Stb4EnYq uIQP7v2HX7YZtI1d0VqqMw4TD6iTpYe9jdpVdpJ1seNEswHHA6x1LCpzKGHjhyxD3lsCVJTv6oIm yU0M/xeGNIZzO4ycAJetkv5MPL649lYmVuypW1fO3KHHsBzGaNEl4YWFjWEPI2HZVDV9IwKt3e4N khSxqLEo2r85tGRWZW7WB9Tt+T1d2hNca/pIXpAu6UqPncrKEPBBspkyOxq1B/06SQKssnGbLxb0 W3aYPVfhL1tFF+kEAgFu/93cTTW3joXnHgqvshDVAzi5S+p8BaQh8M5H5YNenG4gXgSIMx5phkYw JljtL9NxUvcI/5FwfVCWsHO1IjHm05R5dib8FKWGxDo+p73JZf/hA/DNlaiNx9xs/X4XFF1o99UX r/9I54aL9QjMc//wMb4MshcOpvpc1FEdhoQibEYb3/IZ9Sg1LrzSOW18f6puqgO+U7urFHb49+m+ jJS5qsgdLri3ynuqpqp15Xn9Pr13zfTSF6yQWv5aD/XzDO7lDQTC5WyyWjz2BlquX3zv/KZ9Y17A EP928pLzGSAXr997x63tXYg0JHS9B0A7NlMHebmOMnH3rs9LoFvsQJNhl7awZbpMaDVKXvCO63jN /u8eCFNVntkBG82O4unIG1Vdd3bkvOa0QtDNLNVZIROSgKUn+K6VFZAq9LqA9Iy/Ecx/hlzUKgyu 8nxH5SlhseksAX+MF6c3yxb4peXyl0Q8onUWMyAR2KQe4jyBBNP6GebH2T5wfdhBVPgaD+EAVrWI mfeZx8lOhDEbdvzPK1z0UW/PTU7fnsjPGOHBjLMse9oQ+F2P5cADrFJRMu2DfptFHNAp35a3VuUE TSRmjDRltqTSdJTBkjGvokIL6USVI7ieWy5cXUFV1HlVQmyz7hSc2AW4WUF6DCdEEk59hGXmxBc2 Gswj8ddTCD5NXdp1YeGMVDkSkNG0lySDprfYMfs30BgBH+qpySR9VBex3S3Ev5PI71hFeSuXTkHp cFv9D2lgDx6G1XniLS0+luQWwlCjDO3+R2CGTr1qB1Gn5eDbX6lJwJCVjzdJzmC5amebNUcuTESd xB8sN10Ogqvw5AbmQjfilyroG+z5AH0mffRxQGonw2nRBWGu0083syxsOkS3sp8vQ1VBPTkfO+Kc QZCLc315zP9qhdkkTd7JKz97cBzXfpTyJnW0nIm8/e1MOXCqHjOnCQcBxbUTDPaEf0z/WWmr2fKn GEp6EhhwvmbHMbhhW4SgNdhkWMA0176MQXJeZBhooG2VZY45nHG4Z7FthbnDKonvN3z+yIEWeJdQ gJUVAvfy7dn4BWODTP8OgkFCtdZcbhAfl8aQET6FGj4EEzwuOE3TEOLn7s5/FbHguXmvn4JhfiO6 bfiqT9bOT4B/BekmnTwP+zIMYQ9j1WyoEQVmSwM3CMeT15uxfSWmrYliLQegwhZ62m/GcRVurWhD ZauExfqyyD9p+i0HmZ3/ZNMSBMxzsLUrbcfD2ax8Awwd1L9HWck/hY0ENogJeg1lbmRzdHJlYW0N ZW5kb2JqDTEzIDAgb2JqDTw8IA0vVHlwZSAvRm9udCANL1N1YnR5cGUgL1R5cGUxIA0vTmFtZSAv RjUgDS9FbmNvZGluZyAyNiAwIFIgDS9CYXNlRm9udCAvSGVsdmV0aWNhIA0+PiANZW5kb2JqDTE0 IDAgb2JqDTw8IA0vVHlwZSAvRm9udCANL1N1YnR5cGUgL1R5cGUxIA0vTmFtZSAvRjcgDS9FbmNv ZGluZyAyNiAwIFIgDS9CYXNlRm9udCAvVGltZXMtQm9sZCANPj4gDWVuZG9iag0xNSAwIG9iag08 PCANL1R5cGUgL0ZvbnQgDS9TdWJ0eXBlIC9UeXBlMSANL05hbWUgL0Y5IA0vRW5jb2RpbmcgMjYg MCBSIA0vQmFzZUZvbnQgL1RpbWVzLUl0YWxpYyANPj4gDWVuZG9iag0xNiAwIG9iag08PCANL1R5 cGUgL1BhZ2VzIA0vS2lkcyBbIDIzIDAgUiAxIDAgUiA0IDAgUiBdIA0vQ291bnQgMyANL1BhcmVu dCAxNyAwIFIgDT4+IA1lbmRvYmoNMTcgMCBvYmoNPDwgDS9UeXBlIC9QYWdlcyANL0tpZHMgWyAx NiAwIFIgMTggMCBSIF0gDS9Db3VudCA1IA0+PiANZW5kb2JqDTE4IDAgb2JqDTw8IA0vVHlwZSAv UGFnZXMgDS9LaWRzIFsgNyAwIFIgMTAgMCBSIF0gDS9Db3VudCAyIA0vUGFyZW50IDE3IDAgUiAN Pj4gDWVuZG9iag0xOSAwIG9iag08PCANL0NyZWF0aW9uRGF0ZSAo3iHnh1dWzsQT5yKZknc2FCkN L1Byb2R1Y2VyIChk5Nb/blxy/oUhuxPMpiMCVAZnvViowDyBYbPg5OTEWKzShq+wfbN3rjTyaSzD cTfyFkXN418HbTHBPGpiGk/clC88QDWgwCkNL0F1dGhvciAo23C/1gcckddyvHrD0zBjKQ0vQ3Jl YXRvciAo21+Z/Cs+rcMPkEH4hhRnUnUu0nKInRLDUCkNL1RpdGxlICjpc6bKXlqdqEy7d8vKbHJE YCkNL1N1YmplY3QgKMlyu84CC96/cYAz3MM0LBBcKHPePOXGWJdccuez6IfcMa+8KQ0vS2V5d29y ZHMgKKtcKO+KKQ0vTW9kRGF0ZSAo3iHnh1dWzsQT5yKZknsxEykNPj4gDWVuZG9iag14cmVmDTAg MjAgDTAwMDAwMDAwMDAgNjU1MzUgZg0KMDAwMDAwMzQ4MiAwMDAwMCBuDQowMDAwMDAzNjMzIDAw MDAwIG4NCjAwMDAwMDM3NjggMDAwMDAgbg0KMDAwMDAwNjI3NSAwMDAwMCBuDQowMDAwMDA2NDI2 IDAwMDAwIG4NCjAwMDAwMDY1NTAgMDAwMDAgbg0KMDAwMDAxMzcxNCAwMDAwMCBuDQowMDAwMDEz ODY1IDAwMDAwIG4NCjAwMDAwMTQwMDAgMDAwMDAgbg0KMDAwMDAyMTMzMCAwMDAwMCBuDQowMDAw MDIxNDg0IDAwMDAwIG4NCjAwMDAwMjE2MjAgMDAwMDAgbg0KMDAwMDAyMzQ5MSAwMDAwMCBuDQow MDAwMDIzNTk2IDAwMDAwIG4NCjAwMDAwMjM3MDIgMDAwMDAgbg0KMDAwMDAyMzgxMCAwMDAwMCBu DQowMDAwMDIzOTA0IDAwMDAwIG4NCjAwMDAwMjM5NzcgMDAwMDAgbg0KMDAwMDAyNDA2NSAwMDAw MCBuDQp0cmFpbGVyDTw8DS9TaXplIDIwDS9JRFs8N2UyMzIwNDRiOTM4ZjJjNzAxZTgxODhkNjRk NGFlMmE+PDdlMjMyMDQ0YjkzOGYyYzcwMWU4MTg4ZDY0ZDRhZTJhPl0NPj4Nc3RhcnR4cmVmDTE3 Mw0lJUVPRg0=

--TW9uLCAyMyBNYXIgMTk5OCAyMzoxMzowOSArMDkwMA==--