This is document is a draft. If you have any suggestions on local discovery, announcements, API or anythin
else, please let us know. Specifically, we would like feedback on:

e DNS discovery and announcements format

e Local printing API

e Difficulty in implementation

Privet

(Cloud Device Local Discovery/API protocol)

1. Introduction
2. Discovery
2.1. Service Type
2.2. TXT record
2.2.1. txtvers
22.2. ty
2.2.3. note (optional)
2.2.4. base_url
2.2.5. type
2.2.6.id
2.2.7.ds
2.2.8.cs
3. Announcements

3.1. Startup
3.2. Shutdown

4.1. /info API
4.1.1. Input
4.1.2. Return
4.1.3. Errors
4.2. [reqgister API
4.2.1. Input
4.2.2. Return
4.2.3. Errors
4.3. /accesstoken API
4.3.1. Input
4.3.2. Return
4.3.3. Errors
4.4. /capabilities API

https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.fx7ntpxr5uac
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.cm71s1vkumpo
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.6qbl4k3rtqmv
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.psq3p4qh0lvq
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.lmrdarlxm6y2
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.t4epql7du1sg
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.15vv3nfqopqj
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.q8ppr15rprn3
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.zfzsv3hg09jb
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.dg46bmw8abc
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.h4mo0e36ntwv
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.fp3mu41m8bwq
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.li2fjuf9gtj5
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.i1u80kuwa3l7
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.lg42r0ppwrbr
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.sq3yckwlpnpc
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.alskcmd0squ6
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.5zy054iutoso
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.9qimc9e7v8ez
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.7k6406e2y9w
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.jhvlpmgj18u0
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.4jnt91vjewlj
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.i9irraulw7l7
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.lqdxw9oj5z88
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.glfgoxwld6zm
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.lqjzbbqbnw32
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.kagbw7emwcf6
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.xsqcgzc24nm4
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.y8u1m56sxjwg
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.rkgrbjhubr7h

4.4.1. Input
4.4.2. Return

4.4.3. Errors

4.5. Errors

5. Printer API

5.1. /printer/createjob API
5.1.1. Input
5.1.2. Return
5.1.3. Errors

5.2. /printer/submitdoc API
5.2.1. Input
5.2.2. Return
5.2.3. Errors

5.3. /printer/jobstate API
5.3.1. Input
5.3.2. Return
5.3.3. Errors

6. Appendix

6.1. XSSI| and XSRF attacks and prevention
6.1.1. XSSl
6.1.2. XSRF

6.2. Secure printing over local network (TBD)

https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.por35oflfrru
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.9j5fd76j18id
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.f11dgerrqpzo
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.xwftf8s12yp
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.hly9zk8kzpbn
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.a4sgpwm4om2
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.urvqsondqk0z
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.q4g5tzjke9l7
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.34f8jw7cp50
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.cshpmfnbmv3f
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.cm3qy9mdpsky
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.4dabqhbeo5gn
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.hi1ycojwzpuo
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.ldeh0cd5npw9
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.y9fkq01t53lg
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.8q7dns1vvmr3
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.4rh6urnd6xca
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.meaefom5yb73
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.hf1vdbbnvmpn
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.twd7w1k48nnt
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.hvrca4t3pceg
https://docs.google.com/a/google.com/document/d/sg26YVmMLQQFs0jDL5BNndQ/headless/print#heading=h.l65l9z6trf15

1. Introduction

Cloud connected devices have many benefits. They can use online conversion services, host job queues while
the device is offline, and be accessible from anywhere in the world. However, with many cloud devices
accessible by a given user, we need to provide a method for finding the nearest device based on location. The
purpose of the Privet protocol is to bind the flexibility of cloud devices with a suitable local discovery mechanism
so that devices are easily discovered in new environments. The goals of this protocol are:

make cloud devices locally discoverable

register cloud devices with a cloud service

associate registered devices with their cloud representation

enable offline functionality

simplify implementation so that small devices can utilize it

Privet protocol consist of 2 main parts: discovery and API. Discovery is used to find the device on the local
network, and API is used to get information about the device and perform some actions.

2. Discovery

Discovery is zeroconf based (MDNS + DNS-SD) protocol. Device MUST implement IPv4 Link-Local

Addressing. Device MUST comply with mDNS and DNS-SD specs.
http://files.zeroconf.org/draft-ietf-zeroconf-ipv4-linklocal.txt
http://files.multicastdns.org/draft-cheshire-dnsext-multicastdns.txt
http://files.dns-sd.org/draft-cheshire-dnsext-dns-sd.txt

Device MUST perform name conflict resolution according to the above specifications.

2.1. Service Type

DNS Service Discovery uses following format for service types: _applicationprotocol._transportprotocol. In case
of Privet protocol service type for DNS-SD should be: _privet._tcp

Device can implement other service types as well. It is advised to use the same service instance name for all
service types implemented by device. For example: printer may implement “Printer XYZ._privet._tcp” and
“Printer XYZ._printer._tcp” services. It will simplify setup for user. However, Privet clients will look only for

“ privet._tcp”.

In addition to the main service type, device MUST advertise PTR record for a corresponding subtype(s) (See
DNS-SD spec: “7.1. Selective Instance Enumeration (Subtypes)”). Format should be following:
_<subtype>. sub. privet. tcp

Currently the only device subtype supported is printer. So, all printers MUST advertise 2 PTR records:

_privet. tcp.local.
_printer. sub. privet. tcp.local.

2.2. TXT record

http://www.google.com/url?q=http%3A%2F%2Ffiles.zeroconf.org%2Fdraft-ietf-zeroconf-ipv4-linklocal.txt&sa=D&sntz=1&usg=AFQjCNEkBeYc6zDL16-d_g4ZcAL0WylF7w
http://www.google.com/url?q=http%3A%2F%2Ffiles.multicastdns.org%2Fdraft-cheshire-dnsext-multicastdns.txt&sa=D&sntz=1&usg=AFQjCNFk3f2Y1gHci_XxUsUPrCU23NpW0Q
http://www.google.com/url?q=http%3A%2F%2Ffiles.dns-sd.org%2Fdraft-cheshire-dnsext-dns-sd.txt&sa=D&sntz=1&usg=AFQjCNFozfRnjd-tl2iCnRYoy8cA7YMclQ

DNS Service Discovery defines fields to add optional information about a service in the TXT records. TXT
record consist of a key/value pairs. Each key/value pair starts from the length byte followed by up to 255 bytes
of text. Key is the first part up to the first ‘=" character. Value is the text to the right of first ‘=" character till the
end. The specification allows for no value in the record, in such case the will be no ‘=" character or no text after
the ‘=" character. (See DNS-SD spec for DNS TXT record format and recommended length).

Privet requires device to send the following key/value pairs in the TXT record. Key/Value strings are case
insensitive, for example “CS=online” and “cs=ONLINE” are the same. Information in the TXT record MUST be
the same as accessible through /info API (see 4.1. API section).

It is recommended to keep TXT record size under 512 bytes.

2.2.1. txtvers

Version of the TXT structure. txtvers MUST be the first record of the TXT structure. Currently the only supported
version is 1.
txtvers=1

2.2.2.ty

Provides a user-readable name of the device. For example:
ty=Google Cloud Ready Printer Model XYZ

2.2.3. note (optional)

Provides a user-readable name of the device. For example:
note=1lst floor lobby printer

This is an optional key and may be skipped. However, if present, user SHOULD be able to change its value.
The same description MUST be used when registering device.

2.2.4. base_url

Server URL this devices is connected to. For example:
base url=https://www.google.com/cloudprint

2.2.5. type

Comma separated list of device subtypes supported by this device. Format is:
‘“type= subtypel, subtype2”. Currently, the only supported device subtype is printer.
type=printer

Each subtype listed should be advertised using corresponding PTR record. For each supported service
subtypes, here should be one corresponding item. Service subtype name (<subtype>._sub._privet._tcp) should
be equal to device type here.

2.2.6.id

Cloud ID of the device. If device has not been registered yet, this key should be present, but value should be
empty. For example:
1d=11111111-2222-3333-4444-555555555555

id=

2.2.7.ds

Indicates current device state. Device may be in one of the 3 possibles states. “idle” means device is ready to
handle to work. “processing” means device is busy processing something, so some functionality may be
limited at the moment (e.g. printer may be printing right now). “stopped” means device is not working and
require a user intervention in order to continue. For example:

ds=idle

ds=processing

ds=stopped

2.2.8.cs

Indicates current connection state. Two possible values are defined in this spec. “online” indicates that device
is currently connected to the cloud. “offline” indicates that device is available on the local network, but can’t talk
to the server. For example:

cs=online

cs=offline
If device has been registered with a cloud, on startup it should check connectivity with a server to detect its
connection state (for example, calling cloud API to get device settings). Unregistered devices on startup may
ping a domain in order to detect their connection state (for example, ping www.google.com for cloud print
devices).

3. Announcements

On device startup, shutdown or state change, device MUST perform announcement step as described in the
mDNS specification. It SHOULD send corresponding announcement at least twice with at least a 1 second
interval between them.

3.1. Startup

On device startup it MUST perform probing and announcing steps as described in the mDNS specification.
SRV, PTR and TXT records should be sent in this case. It is recommended grouping all records into one DNS
response if possible. If not, following order is recommended: SRV, PTR, TXT records.

3.2. Shutdown

On device shutdown it MUST try to notify all interested parties about it by sending a “goodbye packet” with
TTL=0 (as described in mDNS documentation).

3.3. Update

In case of any information described in TXT has changed, device MUST send an update announcement. It is
enough only send TXT record in this case. For example, after a device is registered, it MUST send an update
announcement including the new device id.

http://www.google.com/
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMulticast_DNS&sa=D&sntz=1&usg=AFQjCNEZA9504LLf5FfcpOzLvt8ZN1EQhQ

4. API

After a cloud device has been discovered, client communication is enabled with the device directly over the
local network. All APIs are HTTP 1.1 based. Data formats are JSON based. API requests may be GET or
POST requests.

Each request MUST contain a valid “X-Privet-Token” header. The ONLY request allowed to have an empty
“X-Privet-Token” header is /info request (note that header MUST still be present). If “X-Privet-Token” header
is missing, device MUST respond with 400 HTTP error as following:

HTTP/1.1 400 Missing X-Privet-Token header.

If “X-Privet-Token” header is empty or invalid, device MUST respond with “invalid X-Privet-Token error”
(invalid_x_privet_token, see Errors section for details). The only exception is /info API. To see more info on why
this is done and how tokens should be generated, see Appendix A: XSSI and XSRF attacks and prevention.

If requested API does not exist or not supported, device MUST return HTTP 404 error.

4.1. /info API

Info APl is MANDATORY and MUST be implemented by every device. It is an HTTP GET request for “/info” url:
GET /info HTTP/1.1

Info API returns basic information about a device and functionality it supports. This APl MUST never change the
device status or perform any action, since it is vulnerable to XSRF attacks. This is the ONLY API allowed to
have an empty “X-Privet-Token” header.

Info API MUST return data consistent with data available in TXT record during discovery.

A device that is already registered with a cloud service MUST call the server prior to exposing /info APl in
order to confirm what functionality can be exposed over the local network. Device can cache functionality for
subsequent /info calls during runtime or over reboots (if device boots up offline).

<A specific Google Cloud Print API to query for the set of the supported functionality will be released shortly.
Google Cloud Print may add a notification to notify the device of changes.>

4.11. Input

/info API has no input parameters.

4.1.2. Return

/info API returns basic information about device and supported functionality.

TXT column indicates corresponding field in DNS-SD TXT record.

Value name Value type Description TXT

version string Highest version (major.minor) of API supported,

currently 1.0.

name

string

Human readable name of the device.

ty

description

string

(optional) Device description. SHOULD be
modifiable by user.

note

base url

string

URL of the server this device is talking to. Url
MUST include protocol specification, for example:
https://www.google.com/cloudprint.

base url

type

list of strings

List of device types supported.

type

id

string

Device cloud id, empty if device has not been
registered yet.

id

device state

string

State of the device.

“idle” means device is ready

‘processing” means device is busy and
functionality may be limited for some time
“stopped” means device is not working and user
intervention is required

ds

connection state

string

State of the connection to the server (base_url)
“online” - connection available
“offline” - no connection

CS

access_scopes

list of strings

List of allowed scopes to be used in /accesstoken
API (send from server). Format of the scope is still
TBD.

manufacturer string Name of the device manufacturer

model string Model of the device

firmware string (optional) Device firmware version

serial number string (optional) Device serial number.

setup url string (optional) URL (including protocol) of the page with
setup instructions

support url string (optional) URL (including protocol) of the page with
support, faq information

update url string (optional) URL (including protocol) of the page with
update firmware instructions

x-privet-token string Value of the “X-Privet-Token” header that has to bs
passed to all APIs to prevent XSSI and XSRF
attacks. See 6.1. for details.

api description | List of supported APIs (described below)

of APls

api -is a JSON list containing the list of APIs available through the local network. Note that not all APIs may
available at the same time over the local network. For example, a newly connected device should only support
register api:

n

api”: [
“/register”,

Once device registration is complete, device SHOULD stop supporting the /register API. The device should also
check with the service to provide what APIs can be exposed over the local network. For example:

n

api”: [
“/accesstoken”,
“/capabilities”,
“/printer/submitdoc”,

Following APls are available at this time:
/register - API for device registration over the local network. (see /register API for details). This
API MUST be hidden once the device is successfully registered in the cloud.
/accesstoken - API to request access token from the device (see /accesstoken API for details).
/capabilities - API to retrieve device capabilities (see /capabilities API for details).

/printer/* - API specific to the device type “printer”, see printer specific APIs for details.

Here is an example of the /info response. (Note the lack of the /register API, since this is already
registered device).

“version”: “1.07,
“name”: “Gene’s printer”,
“description”: “Printer connected through Chrome connector”,
“base url”: “https://www.google.com/cloudprint”,
“type”: [
“printer”
1,
“id”: “11111111-2222-3333-4444-555555555555",
"device state”: “idle”,
”connection state”: “online”,
“access scopes”: [
“sharing:confirmation”,
“access:auto”
]
“manufacturer”: “Google”,
“model”: “Google Chrome”,
“firmware”: “24.0.1312.52",

“setup url”: “http://support.google.com/cloudprint/answer/1686197/?hl=en”,
“support url”: “http://support.google.com/cloudprint/?hl=en”,
“update url”: “http://support.google.com/cloudprint/?hl=en”,
“x-privet-token”: “AIp06DjQd80yMoGYuGmT VDAApuBZbInsQ:1358377509659"”,
“Yapi”: [
“/accesstoken”,
“/capabilities”,
“/printer/submitdoc”,

4.1.3. Errors
/info API should ONLY return an error if “X-Privet-Token” header is missing. It should be HTTP error 400.

HTTP/1.1 400 Missing X-Privet-Token header.

4.2. [register API

/register APl is OPTIONAL. Itis an HTTP POST request. /register API MUST check for a valid
“X-Privet-Token” header. Device MUST implement this APl on “/register” url:

POST /register?action=start&user=user@domain.com HTTP/1.1
POST /register?action=complete&user=user@domain.com HTTP/1.1

Device should expose /register APl ONLY when it allows anonymous registration at the moment. For
example:

When device is turned on (or after clicking a special button on the device) and has not been registered
yet, it should expose /register API to allow user from the local network to claim the printer.

After registration is complete, the device should stop exposing /register APIto prevent another user
on the local network from reclaiming the device.

Some devices may have different ways to register devices and should not expose the /register API
at all (for example, Chrome Cloud Print connector).

Registration process consists of 2 steps (See anonymous registration for Cloud Print).

Initiate anonymous registration process

Client initiates this process by calling the /register API. Device sends request to the server to
retrieve registration token and registration URL. Received token and URL SHOULD be returned to the
client. During this step, if the device receives another call to initialize registration, it should drop all
previous data (if any) and start a new registration process.

Complete registration process.

After client has claimed device, the client should notify the device to complete registration. Once
registration process is complete, the device should send an update announcement, including the newly
acquired device id.

4.2.1. Input

/register API has following input parameters:

Name Value

action Can be one of the following:
“start” - to start registration process
“‘complete” - to complete registration process

user (optional) Email of the user who will claim this device.

Device should pass user email (if present) as is to the server register API.

It is highly recommended for client to specify a user email in this API call. Server will verify the provided user
email matches the account used to claim the printer.

4.2.2. Return

/register API returns following data:

Value name Value type Description
action string Same action as in input parameter.
user string (optional) | Same user as in input parameter (may be missing, if omitted
in the input).
token string (optional) | Registration token (mandatory for “start” response, omitted

for “complete”).

claim url string (optional) | Registration url (mandatory for “start” response, omitted for
“‘complete”).

device id string (optional) New device id (omitted for “start” response, mandatory for
“‘complete”).

Device MUST return device id in the /info API response ONLY after registration is complete.

Example 1:

{

“Yaction”: “start”,
“user”: “user@domain.com”,
“token”: “AAA111222333444555666777",

“claim url”: “https://domain.com/SoMeUrL”,
}
Example 2:
{
“Yaction”: “complete”,
“user”: “user@domain.com”,

“device id”: “11111111-2222-3333-4444-555555555555",

http://www.google.com/url?q=http%3A%2F%2Fdomain.com%2FSoMeUrL&sa=D&sntz=1&usg=AFQjCNHNe32VPfHSNYmZBq0hRGWt5hzqnw

4.2.3. Errors

/register API may return following errors (see Errors section for details):

Error Description
offline Device is currently offline and can'’t talk to the server.
server error Server error during registration process.
invalid x_privet_ token [X-Privet-Token is invalid or empty in the request.

Device MUST stop exposing /register API after registration has been successfully completed. If device is
not exposing /register API, it MUST return HTTP 404 error. Therefore, if a device is already registered,
calling this APl MUST return 404. If X-Privet-Token header is missing, device should return 400 HTTP error.

4.3. /laccesstoken API

/accesstoken APl is OPTIONAL. Itis an HTTP GET request. /accesstoken APl MUST check for a valid
“X-Privet-Token” header. Device MUST implement this APl on the “/accesstoken” url:
GET /accesstoken HTTP/1.1

When device receives /accesstoken API call, it should call server to retrieve access token for the given
user/scope and return token to the client. Client will then use access token to access this device through the
cloud.

4.3.1. Input

/accesstoken API has following input parameters:

Name Value

user Email of the user who intended to use this access token. May be empty in th
request.

scope Scope of how this token is intended to be used. This is an arbitrary string,
that should be passed to the server API as is. This may be empty.

4.3.2. Return

/accesstoken API returns following data:

Value name Value type Description
token string Access token returned by the server
token info JSON Object Device MUST copy this parameter from the server response

as is. This allows for flexibility in adding additional or different
parameters in the future. For example, it might contain

number of usages this token is valid for.

user string Same user as in input parameter.
scope string Scope returned by the server (may be empty).
expiration string (optional) Timestamp of the token expiration. Omitted if there is no

known expiration of the token. This should be in the format of
the UNIX 64-bit timestamp. (Number of seconds since epoch,
Jan 1st, 1970).

Example:

{
“token”: “AAA111222333444555666777",

“token info”: {

“some info”: “abcdefg”
by
“user”: “user@domain.com”,
“scope”: “full-access”,

“expiration”: “1359143880",

4.3.3. Errors

/accesstoken APl may return following errors (see Errors section for details):

Error Description
offline Device is currently offline and can'’t talk to the server.
access_denied Insufficient rights. Access denied. Device should return this error when

request has been explicitly denied by server.

server error Server error.

invalid x_privet_token | X-Privet-Token is Invalid or empty in the request.

If device is not exposing /accesstoken API, it MUST return HTTP 404 error. If X-Privet-Token header is
missing, device should return 400 HTTP error.

4.4. |capabilities API

/capabilities APl is OPTIONAL. Itis an HTTP GET request. /capabilities API MUST check for a
valid “X-Privet-Token” header. Device MUST implement this APl on “/capabilities” url:
GET /capabilities HTTP/1.1

When device receives /capabilities API call, if the device is able, it SHOULD contact server to get updated
capabilities. For example, if printer supports posting print job (received locally) to itself through the Cloud Print
service, it should return capabilities that the Cloud Print Service would return. Cloud Print in this case may alter
the original printer capabilities by adding new features it may perform before sending job to the printer. The
most common case is a list of supported document types. If printer is offline, it should return document types it

supports. However, if printer is online and registered with Cloud Print it MUST return “*/*” as one of the
supported types. Cloud Print service will perform necessary conversion in this case. For offline printing, printer
MUST support at least “image/pwg-raster” format.

4.4.1. Input

/capabilities APl has no input parameters.

4.4.2. Return

/capabilities API returns device capabilities in the Cloud Device Description (CDD) JSON format (see
CDD document for details). Printers at minimum MUST return a list of supported types here. For examples, a
Cloud Ready printer that is currently online may return something like this (at minimum):

“version”: “1.07,
“printer”: {
“supported content type”: {
“Yoption”: [
{
“content type”: “application/pdf”,
“rank”: 1,

“min version”: “1.4”

“content type”: “image/pwg-raster”,

“rank”: 2

“content type”: “image/jpeg”,

“rank”: 3

“content type”: “x/*7,

“rank”: 4

and when it's disconnect from the server, it may return:

“version”: “1.07,
“printer”: {
“supported content type”: {
“Yoption”: [
{
“content type”: “application/pdf”,
“rank”: 1,

“min version”: “1.4”

“content type”: “image/pwg-raster”,

“rank”: 2

” .

“content type “image/jpeg”,

“rank”: 3

4.4.3. Errors

/capabilities APl may return following errors (see Errors section for details):

Error Description

invalid x privet token | X-Privet-Token is invalid or empty in the request.

If the device is not exposing /capabilities API, it MUST return HTTP 404 error. If X-Privet-Token header is
missing, device should return 400 HTTP error.

4.5. Errors
Error is returned from any of the above APIs in the following format:
Value name Value type Description
error string Error type (defined per API)
description string (optional) | Human readable description of the error.
server api string (optional) | In case of server error, this field contains server API that
failed.
server code int (optional) In case of server error, this field contains error code server
returned.
server http code int (optional) In case of server HTTP error, this field contains HTTP error
code server returned.
timeout int (optional) Number of seconds for client to wait before retrying (for
recoverable errors only. Client MUST randomize actual
timeout from this value to a value that is + 20%.

All APIs MUST return HTTP error 400 if X-Privet-Token header is missing.
HTTP/1.1 400 Missing X-Privet-Token header.

Example 1:

“error”: “server error”,
“description”: “Service unavailable”,
“server api”: “/submit”,
“server http code”: 503

Example 2:

“error”: “printer busy”,
“description”: “Printer is currently printing other job”,
“timeout”: 15

5. Printer API

One of the device types this protocol supports is type printer. Devices supporting this type MAY implement
some functionality specific to printer. Ideally printing to Cloud-ready printers will go through a Cloud Print server:

Internet

Converted
document (e.g.
PWG raster)

Qriginal
document (e.g.
PDF)

Discovery

Sy

Local network

However, in some cases client may need to send a document locally. It may be needed when client does not

have Google ID or can'’t talk to the Cloud Print server for some reasons. In such case, the print job will be
submitted locally to the printer. The printer, in turn, will use the Cloud Print service for job queueing and
conversion. The printer will re-post the job submitted locally to the Cloud Print service and then request it, since
it was submitted through the cloud. This process will provide a flexible user experience in terms of service
(conversion) and print job management/tracking.

Internet

Converted
document (e.g.

Original PWG raster)
document (e.g.
PDF) J

Discovery
-
Print API
Criginal document
Local network (e.g. PDF)

Since Cloud Print service implements conversion, printer SHOULD advertise supporting all input formats (“*/*”)
among the list of the supported content types:

“version”: “1.07,
“printer”: {
“supported content type”: {
“Yoption”: [

{

“content type”: “image/pwg-raster”,
“rank”: 1
}I
{
“content type”: “x/*7,
“rank”: 2

In some cases a complete offline solution is desired. Since printer capabilities understanding different formats

are limited, client will have to convert document to a few natively supported printer format.

Internet
Unavailable
Discovery
-
Print AFI
Printer-supported document
Local network (e.g. PWG Raster)

This spec REQUIRES all printers to support at least PWG Raster (“image/pwg-raster”) format for offline
printing case. Printer may support other formats (for example jpeg) and if client supports it, it may send
document in that format. Printer MUST expose supported types through /capabilities API, for example:

“version”: “1.07,
“printer”: {
“supported content type”: {

“option”: [

{
“content type”: “image/pwg-raster”,
“rank”: 1

by

{
“content type”: “image/jpeg”,
“rank”: 2

There are 2 ways client may initiate printing over the local network.

Simple printing - client sends the document over the local network to /submitdoc API (without specifying
job_id parameter). Submitted document will be printed using default print ticket settings and no print job

statuses are needed. If the printer ONLY supports this type of printing, it MUST advertise ONLY /submitdoc
APl in the /info API response..
‘api”: |
“/accesstoken”,
“/capabilities”,
“/printer/submitdoc”,

Advanced printing - client should first create a print job on the printer by calling /printer/createjob API
and a valid CJT job ticket in the request. Printer MUST store the print ticket in memory and return a job_id
back to the client. Then client will call /printer/submitdoc API and specify previously received job id. At that
time printer will start printing. Client will poll printer for print job status by calling /printer/jobstate API.

In the multiclient environment, there is no guarantee how this APl is called. It is possible for one client to call
/createjob between another client’'s /createjob->/submitdoc calls. To eliminate possible deadlocks
and improve usability we recommended having a small queue of pending printjobs on the printer (at least 3-5):
e /createjob takes the first available stop in the queue.
e Job lifetime (in the queue) is at least 5 minutes.
e |If all spots in the queue is taken, the oldest, non-printing job shall be removed and a new one will be
placed there.
e |[f there is a print job currently printing on the device (simple or advanced printing), /submitdoc should
return status busy and propose a timeout to retry this print job.
e If /submitdoc refers to the job that has been removed from the queue (due to replacement or
timeout), printer should return an error unknown _job id and client will retry process from the
/createjob step. Client MUST wait for a random timeout period of up to 5 seconds before retrying.

If memory constraints prevent storing multiple pending jobs on the device, it is possible to have a queue of 1
print job long. It should still follow the same protocol as above.

After job is complete/error, printer should store information about jobs status for at least 5 minutes. Queue size
for storing completed job statuses should be at least 10. If there are more job statuses that need to be stored,
the oldest one may be removed from the queue before the 5 minute timeout.

<For now clients will poll for job status. In the future, we may require printer to send TXT DNS notification when
ANY print job status has changed.>

5.1. /printer/createjob API

/printer/createjob APl is OPTIONAL (see Simple Printing above). It is an HTTP POST request.
/printer/createjob APl MUST check for a valid “X-Privet-Token” header. Device MUST implement this
APlon “/printer/createjob” url:

POST /printer/createjob HTTP/1.1

When receiving /printer/createjob API call, printer MUST create a new print job ID and store received
print ticket in the CJT format and return print job id back to the client.

5.1.1. Input

/printer/createjob API has no input parameters in URL. Request body should contain print job ticket

data in CJT format.

5.1.2. Return

/printer/createjob API returns following data:

Value name Value type Description
job id string ID of the newly created print job.
job timestamp string Time stamp when print job has been created. This should be

in the format of the UNIX 64-bit timestamp. (Number of
seconds since epoch, Jan 1st, 1970.)

job expiration string Time stamp when print job expires. This should be in the
format of the UNIX 64-bit timestamp. (Number of seconds
since epoch, Jan 1st, 1970.)

Client SHOULD not match job timestamp or job expiration against client time, since time of the client
and device might be different. Instead client should make its own timestamp when receiving this response and
use job expiration - job timestamp time interval to see if job is still valid.

Example:

“job_id”: 1237,

“job_ timestamp”: “1359143880”,
“job expiration”: “1359144480”
}
5.1.3. Errors

/printer/createjob API may return following errors (see Errors section for details):

Error Description

invalid ticket Submitted print ticket is invalid.

invalid _x_privet_token | X-Privet-Token is invalid or empty in the request.

If device is not exposing /printer/createjob, it MUST return HTTP 404 error. If X-Privet-Token header is
missing, device should return 400 HTTP error.

5.2. /printer/submitdoc API

/printer/submitdoc APl is REQUIRED to implement printing over local network (offline or repost to Cloud
Print). It is an HTTP POST request. /printer/submitdoc APl MUST check for a valid “X-Privet-Token”
header. Device MUST implement this APl on “/printer/submitdoc” url:

POST /printer/submitdoc HTTP/1.1

When receiving /printer/submitdoc API call, printer should start printing. If it is unable to begin printing, it
MUST return error printer_busy and a recommended timeout for client to wait before trying again.

5.2.1. Input

/printer/submitdoc API has following input parameters:

Name Value

job_id (optional) Print job id. May be omitted for simple printing case (see above).
Must match the one returned by the printer.

user name (optional) Human readable user name. Can’t be trusted and used just to
annotate print job. If job is re-posted to the Cloud Print service this string
should be attached to the Cloud Print job.

client name (optional) Name of the client application making this request. For display
purposes only. If job is re-posted to the Cloud Print service this string should
be attached to the Cloud Print job.

job name (optional) Name of the print job to be recorded. If job is re-posted to the Clou
Print service this string should be attached to the Cloud Print job.

offline (optional) Could only be “offline=1". In this case printer should only try printin
offline (no re-post to Cloud Print server).

Request body should contain a valid document for printing. “Content-Length” should include the correct length
of the request. “Content-Type” header should be set to document MIME type and match one of the types in the
CDD (unless CDD specifies “*/*”).

Clients are highly recommended to provide a valid user name (or email), client name and job name with this
request. Those fields are only used in Ul to improve user experience.

5.2.2. Return

/printer/submitdoc API returns following data:

Value name Value type Description

job id string ID of the newly created print job (simple printing) or job id
specified in the request (advanced printing).

job timestamp string Time stamp when print job has been created. This should be
in the format of the UNIX 64-bit timestamp. (Number of
seconds since epoch, Jan 1st, 1970.)

job expiration string Time stamp when print job expires. This should be in the
format of the UNIX 64-bit timestamp. (Number of seconds
since epoch, Jan 1st, 1970.)

job_type string Content-type of the submitted document.

job_size int 64 bit Size of the print data in bytes.

job name string (optional) Same job name as in input (if any).

Example:
{
“job id”: “123”,
“job_ timestamp”: “1359143880”,
“job_ expiration”: “1359144480",
“job type”: “application/pdf”,
“job_size”: 123456,
“job _name”: “My PDF document”
}
5.2.3. Errors

/printer/submitdoc APl may return following errors (see Errors section for details):

Error Description

invalid print job Invalid/expired job id is specified in the request. Retry after timeout.

invalid document type Document MIME-type is not supported by the printer.

invalid document Submitted document is invalid.
document too large Document is too large
printer busy Printer is busy and can’t currently process document. Retry after
timeout.
printer error Printer is in error state and require user interaction to fix it. Description

should contain more detailed explanation (e.g. “Paper jam in Tray 17).

server error Postina document to Cloud Print has failed
invalid _x_privet_token | X-Privet-Token is invalid or empty in the request.

If device is not exposing /printer/submitdoc, it MUST return HTTP 404 error. If X-Privet-Token header is
missing, device should return 400 HTTP error.

5.3. /printer/jobstate API

/printer/jobstate APl is OPTIONAL (see Simple Printing above). It is an HTTP GET request.
/printer/jobstate APl MUST check for a valid “X-Privet-Token” header. Device MUST implement this API
on “/printer/jobstate” url:

GET /printer/jobstate HTTP/1.1

When receiving /printer/jobstate API call, a printer should return the status of the requested print job or
invalid print job error.

5.3.1. Input

/printer/jobstate API has following input parameters:

Name Value
job_id Print job ID to return status for.
5.3.2. Return
/printer/jobstate API returns following data:
Value name Value type Description
job_id string Print job id there status information is for.
state string “‘draft” - when print job has been created on the device (no
/printer/submitdoc calls has been received yet).
‘queued’ - when print job has been received and queued, bu
printing has not started yet.
“in_progress” - when print job is in the progress of printing
“stopped” - print job has been paused, but can be restarted
manually or automatically.
“‘done” - when print job is done.
“aborted” - when print job failed.
description string (optional) Human readable description of the print job status.
Shauld inelude additional information if status is “paused”
job timestamp string Time stamp when print job has been created. This should be
in the format of the UNIX 64-bit timestamp. (Number of
seconds since epoch, Jan 1st, 1970).
job expiration string Time stamp when print job expires. This should be in the
format of the UNIX 64-bit timestamp. (Number of seconds
since epoch, Jan 1st, 1970).
job_type string (optional) Content-type of the submitted document.
job_size int 64 bit (optional) Size of the print data in bytes.
job_ name string (optional) Same job name as in input (if any).

server job id

string (optional)

(optional) ID of the job returned from the server (if job has
been posted to Cloud Print service). Omitted for offline
printing.

Example (printing by reporting through Cloud Print):

“job_id”: “123”,

“status”: “in progress”,

“job timestamp”: “1359143880”,
“job_expiration”: “1359144480”,

“job type”: “application/pdf”,

“job_ size”: 123456,

“job name”: “My PDF document”,
“server job id”: “1111-2222-3333-4444"

Example (offline printing error):

“job id”: “123”,

“status”: “paused”,
“description”: “Out of paper”,
“job timestamp”: “1359143880",
“job expiration”: “1359144480”,
“job_ type”: “application/pdf”,
“job size”: 123456,

“job name”: “My PDF document”

5.3.3. Errors

/printer/jobstate APl may return following errors (see Errors section for details):

Error Description
invalid print job Invalid/expired job ID is specified in the request.
server error Getting print job status (for print jobs posted to Cloud Print) has failed.
invalid _x_privet_token | X-Privet-Token is invalid or empty in the request.

If device is not exposing /printer/jobstate, it MUST return HTTP 404 error. If X-Privet-Token header is
missing, device should return 400 HTTP error.

6. Appendix

6.1. XSSI and XSRF attacks and prevention

This section will explain possibility of the XSSI and XSRF attacks on the device and how to protect from them
(including token generation techniques).

More details are here: http://googleonlinesecurity.blogspot.com/2011/05/website-security-for-webmasters.html

http://www.google.com/url?q=http%3A%2F%2Fgoogleonlinesecurity.blogspot.com%2F2011%2F05%2Fwebsite-security-for-webmasters.html&sa=D&sntz=1&usg=AFQjCNGfEVwZAC-5zTvoGFDCjdNE25PBcw

Normally, XSSI and XSRF attacks are possible when site is using cookie authentication mechanism. While we
don’t use cookies here, we are still vulnerable to such attacks. By using the local network we are trusting
requests implicitly.

6.1.1. XSSI

It is possible for a malicious website to guess the IP address and port number of a Privet-compatible device
and to try to call the Privet API using “src=<api name>” inside of a <script> tag:

<script type="text/javascript" src="http://192.168.1.42:8080/info"></script>
Without any protection, malicious websites would be able to execute API calls and access results.

To prevent this type of attack, ALL Privet API calls MUST require the “X-Privet-Token” header in the request.
“src=<api>" script tags are not able to add headers, effectively guarding against this type of attack.

6.1.2. XSRF

http://en.wikipedia.org/wiki/Cross-site_request_forgery

It is possible for a malicious website to guess the IP address and port number of a Privet-compatible device
and try to call Privet API using an <iframe>, forms or some other cross-website loading mechanism. Attackers
would not be able to access the results of the request, but if the request would perform an action (e.g. printing),
they could still trigger it.

To prevent this attack, we require the following protection:

Leave /info APl open to XSRF

/info APl MUST NOT perform any actions on the device

Use /info API to receive x-privet-token

All other APIs MUST check for a valid x-privet-token in “X-Priver-Token” header.
x-privet-token SHOULD be valid for 24 hours only

Even if an attacker is able to execute the /info API, they would not be able to read x-privet-token from
the response and therefore would not be able to call any other API.

It is strongly recommended to generate the XSRF token using following algorithm:

XSRF token = base64(SHAI (device secret + DELIMITER + issue timestamp) +
DELIMITER + issue timestamp)

where:
DELIMITER is a special character, usually ‘'
issue timestamp is a Unix 64 bit timestamp (number of seconds from the 1st of Jan 1970)
SHA1 - hash function using SHA1 algorithm
base64 - base64 encoding
device secret - secret specific to the device. Device secret MUST be updated on every restart.
Recommended ways to generate device secret:
e Generate new UUID on every restart

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCross-site_request_forgery&sa=D&sntz=1&usg=AFQjCNGNxgWLDXkph21PuNF3gXAzYceNYg

e Generate 64 bit random number on every restart

Device is not required to store all of the XSRF tokens it has issued. When the device needs to verify a XSRF
token for validity, it should base64 decode the token. Get the issue timestamp from the second half
(cleartext), and try to produce SHA1 hash of device secret + DELIMITER + issue timestamp where
issue timestamp is from the token. If newly generated SHA1 matches the one in the token, device must
now check if the issue timestamp is within the validity period from (24 hours) of the current time.

6.2. Secure printing over local network (TBD)

While the local network is assumed more secure than public networks, additional measures can be taken when
sending sensitive documents to a printer. To provide encryption capabilities of a print job, use the following
procedures:
e Printer must expose it’s public key and algorithm in the /info API.
e Client will use printer’s public key to encrypt content and send it over /submitdoc API (adding an extra
parameter or header that content is encrypted).

To mitigate the risk of keys being compromised, a printer should regenerate it's keys on every startup and/or on
a daily basis, or may ask server (GCP) to perform key generation for it.

