
August 2004 www.stsc.hill.af.mil 23

Software modules comprise a large part
of life- and mission-critical systems.

System crashes are more likely to be the
result of a fault in the software than in the
hardware. In spite of our best efforts at
removing the errors/faults (bugs1) before
deploying those systems, it is wise to
assume that bugs remain in the system and
those bugs often lead to failures (crashes).

Software fault tolerance is aimed at tolerat-
ing those residual faults by building mech-
anisms to watch for failures and recover
from them [1, 2]. Fault tolerance is a reac-
tive approach: Failures usually happen at
unexpected times, and the built-in mecha-
nisms to recover from those failures will
kick-in to restart the system and the ser-
vice. However, these unscheduled inter-
ruptions in service are expensive and can
be life-threatening. This article describes a
proactive, preventive technique called soft-
ware rejuvenation that prevents faults from
becoming failures.

Lawrence Bernstein observed in 1990
that faults/bugs, when triggered in soft-
ware, do not always cause failures/crashes
immediately but take the system into a
state where it begins to decay2. This decay
has symptoms of memory leakage, broken
pointers, unreleased file locks, numerical
error accumulation, etc., causing gradual
degradation in availability of service and
data quality and eventually leading to a
failure/crash.

Based on this observation, a new
method to enhance the dependability of a
software system, called software rejuvenation,
was introduced in 1995 by Kintala and his
colleagues in Bell Labs [1, 3]. Software
rejuvenation is a proactive approach that
involves stopping an executing process
periodically or when a failure is imminent,
cleaning up the internal state of the sys-
tem, and then restarting it at a known
healthy state to prevent a predicted future
failure.

Software rejuvenation is as intuitive as
occasionally rebooting your PC, except
that it was never defined, implemented,

modeled, and analyzed for software sys-
tems before 1995 [3]. Shari Pfleeger used
the term software rejuvenation to mean,
“…looking back at software work prod-
ucts to try to derive additional informa-
tion …” in her seminal software engineer-
ing book [4]. Her use differs from ours as
we focus on the execution of the software
during its mission, and she focuses on the
software development process.

Use
Since the 1960s, data communication
designers knew to have software modules
restart a communication line when it

hung. Communication line handlers often
include retry logic to restart a line if it
hangs. IBM implemented these techniques
in its data communication systems. Their
system network architecture software was
especially robust to communication line
hangs and restarted lines several times
once a hang was detected.

An early implementation of this tech-
nique was part of the Safeguard

Antimissile Missile System software
implemented in the 1960s. Software
designers noted that hangs could occur
once error reporting buffers were full.
Rather than clearing the buffers, a simple
fix was implemented to restart the lines
for the remote launch sites periodically
when the system was in a peacetime sur-
veillance mode. This avoided extraneous
error reporting and improved the avail-
ability of the system. Separate mainte-
nance software monitored the quality of
the communication lines.

Software rejuvenation technology
became the modern realization of this
early design that restarts a line before the
hang to avoid potential secondary prob-
lems. It is a low-cost, easy-to-implement
technology that makes systems more
trustworthy in telecommunication sys-
tems.

A billing data collector system, origi-
nally built by AT&T and used in most of
the U.S. regional telephone companies,
was the first system that used software
rejuvenation for the entire system and
whose use was modeled and analyzed [3].
Since then it has been used in many
telecommunication applications, transac-
tion processing systems, and Web servers
[5]. Billing system failures and the use of
software rejuvenation to prevent those
failures, as described in [3], are quite simi-
lar to the failures and the fix that Nick van
der Zweep described recently in Computer
World 3.

Software rejuvenation is also imple-
mented in IBM's Director Resource
Manager [6] for use in applications built
on Netfinity cluster systems. Netfinity
Director provides an interface to rejuve-
nate an application using a time interval as
well as a prediction based on a number of
operating system resource values.

The X2000 computing system for
NASA’s 15-year long Pluto-Kuiper
Express mission has stringent constraints
in both performance and dependability.
The mission itself has three phases: initial

Software Rejuvenation

Lawrence Bernstein and Dr. Chandra M. R. Kintala
Stevens Institute of Technology

Here is a design approach that makes software more trustworthy, called software rejuvenation. It is a periodic, pre-emptive
restart of a running system at a clean internal state that prevents latent faults from becoming future failures. It was used in
systems ranging from a Lucent billing unit to NASA's long-duration space mission to Pluto, and is implemented in IBM's
Netfinity resource manager. It is easy to apply, uses very little central processing unit time, increases software reliability by two
orders of magnitude, and is recommended for all software-intensive systems.

“A billing data collector
system, originally built
by AT&T and used in

most of the U.S. regional
telephone companies,
was the first system
that used software
rejuvenation for the
entire system and

whose use was modeled
and analyzed.”



Cruise phase of 12 years, Encountering phase
of four months, and Exploration phase of
three years. The X2000 system has several
processor strings, and all their computing
power is needed during the critical
Encountering phase while only a subset of
the strings is required to be in service dur-
ing Cruise and Exploration phases. This
aspect is made use in the X2000 by rotat-
ing the individual processor strings to an
on-duty and off-duty cycle and rejuvenat-
ing the software [7] to increase system reli-
ability.

Recent experiments at Stevens
Institute of Technology showed that
datalink protocols suffering memory leak
failures could be made reliable using reju-
venation libraries without having to fix the
memory leak bug [8]. In essence, rejuve-
nation bounds the execution space for the
working software so that latent failure
modes are not executed. Had this technol-
ogy been used in the Patriot Missile sys-
tem (see the next section) during the first
Iraq war, the counter overflow problem
causing the anti-scud system to fail would
not have occurred.

Patriot Missile Case History 
On Feb. 11, 1991, the Patriot
Project Office received Israeli data
identifying a 20 percent shift in the
Patriot system's radar range gate
after the system had been running
for eight consecutive hours. This
shift was significant because it
meant that the target (in this case,
the Scud) was no longer in the cen-
ter of the range gate. The target
needs to be in the center of the
range gate to ensure the highest

probability of tracking the target.
The range gate algorithm deter-
mines if the Scud is in the Patriot's
firing range. If it is, the Patriot fires
its missiles.

Patriot Project Office officials
said that the Patriot system would
not track a Scud when there is a
range gate shift of 50 percent or
more. Because the shift is directly
proportional to time, extrapolating
the Israeli data (which indicated a
20 percent shift after eight hours)
determined that the range gate
would shift 50 percent after about
20 hours of continuous use.
Specifically, after about 20 hours,
the inaccurate time calculation
becomes sufficiently large to cause
the radar to look in the wrong
place for the target. Consequently,
the system fails to track and inter-
cept the Scud.

The range gate's prediction of
where the Scud will next appear is
a function of the Scud's known
velocity and the time of the last
radar detection. Velocity is a real
number that can be expressed as a
whole number and a decimal (e.g.,
3750.2563 miles per hour). Time is
kept continuously by the system's
internal clock in tenths of seconds
but is expressed as an integer or
whole number (e.g., 32, 33, 34,
etc.). The longer the system has
been running, the larger the num-
ber representing time. To predict
where the Scud will next appear,
both time and velocity must be
expressed as real numbers. Because
of the way the Patriot computer
performed its calculations and the
fact that its registers are only 24
bits long, the conversion of time
from an integer to a real number
cannot be any more precise than 24
bits. This conversion results in a
loss of precision causing a less
accurate time calculation. The
effect of this inaccuracy on the
range gate's calculation is directly
proportional to the target's velocity
and the length of time the system
has been running. Consequently,
performing the conversion after
the Patriot has been running con-
tinuously for extended periods
causes the range gate to shift away
from the center of the target, mak-
ing it less likely that the target will
be successfully intercepted.

By automatically restoring the
registers to a safe initial state every

eight hours when there are no tar-
gets in track the system can avoid
making the fault into a failure. The
problem need not be fixed in the
algorithm itself. This is precisely
the effect of software rejuvenation.

This was not the first time
this type of problem caused an
ABM [antiballistic missile] system
to fail. During the Safeguard
Antimissile Test Program conduct-
ed at Meck Island in the Kwajalein
Atoll, a similar problem occurred
in the early 1970s. The test site was
in an extended hold due to a range
problem. The computers and
radars scanned the sky for the tar-
get that was still on the launch pad
in California. After several hours of
idling, the antimissile system com-
puter crashed. A timing register
overflowed. The system was not
tested in this configuration. The
problem was found and fixed and
well documented in the Mission
Test Reports. Further study led to
the innovative idea to restart the
computer periodically when it was
scanning the sky so that it returned
to a known tested state. This
design was included in the tactical
system design. The design was later
applied to avoiding hash table
problems in a telephone data
switch, and collecting billing data
from telephone switches, but
unfortunately not in the follow-on
Patriot antimissile system. [9]

Modeling and Analysis
Software rejuvenation incurs overhead
and should be done at a time when the
cost due to service interruption is mini-
mal. Hence modeling the system to find
optimal rejuvenation times is crucial. A
simple and useful model based on contin-
uous-time Markov chains was first intro-
duced in [3] to analyze software rejuvena-
tion.

Figure 1 shows the model for system
A without rejuvenation and Figure 2 is the
model for system A with rejuvenation. S0
is the initial robust state of system A, SP is
the failure probable state, and SF is the
failure state. The transition time from the
failed state SF to robust state S0 is expo-
nentially distributed with rate r1 (the repair
rate), the transition rate from robust state
S0 to failure probable state SP is r2, and λ
is that rate for transition from a failure
probable state to a failed state. If the sys-
tem performs rejuvenation, it will go from
SP to SR at rate r4 and will transition to

24 CROSSTALK The Journal of Defense Software Engineering August 2004

Software Engineering Technology

S
F

S
P

S
0

r
2

r
1

λ−

S
F

S
P

S
0

r
2

r
1

λ−
S

R

r
3

r
4

Figure 1: Probabilistic State Transition Model
for A Without Rejuvenation

S
F

S
P

S
0

r
2

r
1

λ−
S

R

r
3

r
4

Figure 2: Probabilistic State Transition Model
for A With Rejuvenation



robust state at rate r3.
From this model you can compute the

expected downtime due to rejuvenation
over period L to be (λ/r1+r4/r3)/(1+λ/r1+
r4/r3+(λ+r4)/r2) x L. For example, suppose
system A has the following profile:
1. Its mean time between failures

(MTBF) is three months; hence, its
failure distribution rate λ is
1/MTBF=1/(3x30x24).

2. Its expected repair time is two hours
after an unexpected failure, so its
repair distribution rate r1 is (1/2)=0.5.

3. Its expected time to go from robust
state to a failure probable state is 10
days; hence, its r2 is 1/(10x24).

4. Its expected repair time after a sched-
uled failure is 10 minutes, so its r3 is
(1/(1/6))=6.
The expected downtime of A over a

period of one year will then be 7.19 hours
without rejuvenation (r4=0) and 6.36
hours with a rejuvenation frequency of
two weeks (r4=1/(14x24)).

This model was extended using
Stochastic Petri Nets to study rejuvenation
using the cluster-based fail-over mecha-
nisms in IBM’s Netfinity systems [6].
Using this model, it has been shown, for
example, that in a two-node cluster system
running a database application with one
node acting as a spare, the reduction in
downtime due to a software rejuvenation
interval of 100 hours is 0.74. In the X2000
for the Pluto-Kupier mission, analysis of
reliability due to software rejuvenation
showed two orders of magnitude
improvement and the optimal interval was
found to be 31.2 weeks in the 12-year long
Cruise phase [7].

A number of other modeling tech-
niques were developed to study software
rejuvenation in other application scenar-
ios, including the Markov regenerative
process model for transaction-based sys-
tems, the Weibull distribution model to
combine check pointing and rejuvenation,
and several others [10].

The Future
Software rejuvenation is ready for indus-
try-wide deployment. It can make software
systems more trustworthy. Good designers
will use it and move from the state of the
art to the state of the practice. It is a good
design practice for individual systems.

Software rejuvenation is one aspect of
self-healing that has gained research inter-
est recently. There are some interesting
new problems for software rejuvenation in
large-scale, networked, self-healing sys-
tems. We describe some of those prob-
lems here and make some suggestions:
1. For networked applications, we need

to monitor and gather the availability
and quality of all the required
resources for the application across
the network, and then synthesize that
gathered data and make a prediction
about possible failure of the applica-
tion or a component in the application.
Network application monitoring might
be hard to do in such a generalized
fashion. You can perhaps do it in a
limited domain such as a Voice over
Internet Protocol (VoIP) application
in an enterprise network.

2. Self-healing systems on a network
need alternate paths for communica-
tion between components to avoid an
impending failure. This may be hard to
do in a generalized fashion. But in
much the same way as in clustered sys-
tems providing redundancy for cen-
tralized applications, you can perhaps
provide alternate communication

paths for some self-healing applica-
tions (for example, VoIP) using alter-
nate service provider networks.

3. Modeling and implementation have
several problems due to their large-
scale nature. What is a state in a large-
scale system when state is across sever-
al products and systems in a network?
Perhaps, you need to model the system
in a hierarchical, tree-structured fash-
ion decomposing the state into smaller
units as you need it for analysis. Failure
symptoms are at a system/network
(macro) level but rejuvenation actions
are at a component (micro) level; how
do you correlate the two? This topic is
perhaps related to event correlation in
network management. How do you do
rejuvenation efficiently in very large

systems? Perhaps gradual load shed-
ding can be used. What is a safe (clean
internal) state to back up to? How do
you back up to that state?

Conclusion
Software rejuvenation is a periodic, pre-
emptive restart of a running system at a
clean, internal state to prevent future fail-
ures. It was used in systems ranging from
a Lucent billing unit to NASA's long-dura-
tion space mission to Pluto, and is imple-
mented in IBM's Netfinity resource man-
ager. It is one aspect of self-healing sys-
tems. Interesting future research direc-
tions for software rejuvenation and self-
healing are in large-scale networked sys-
tems built with commercial off-the-shelf
components and open interfaces.◆

References
1. Bernstein, L. “Software Fault Tol-

erance Forestalls Crashes: To Err Is
Human, to Forgive Is Fault Tolerant”
in Advances in Computers 58. Highly
Dependable Software. Ed. M. Zel-
kowitz. Academic Press, 2003: 240-285.

2. Lyu, M., Ed. Software Fault Tolerance.
New York: John Wiley, 1995.

3. Huang, Y., C. Kintala, N. Kolettis, and
N.D. Fulton. Software Rejuvenation:
Analysis, Module and Applications.
Proc. of 25th Symposium on Fault
Tolerant Computing FTCS-25,
Pasadena, CA, June 1995: 381-390
<www.ece . s t evens - t e ch . edu/~
ckintala/Papers/RejuvFTCS25.pdf>.
The Web site <www.software-
rejuvenation.com>, maintained by
professor Trivedi at Duke University,
has a collection of follow-up research
papers on the topic.

4. Pfleeger, S.L. Software Engineering
Theory and Practice. 2nd ed. Prentice
Hall, 2001: 496-502.

5. Li, L., K. Vaidyanathan, and K.S.
Trivedi. “An Approach for Estimation
of Software Aging in a Web Server.”
International Symposium on Empiri-
cal Software Engineering, Nara, Japan,
Oct. 2002.

6. Vaidyanathan, K., R.E. Harper, S.W.
Hunter, and K.S. Trivedi. Analysis and
Implementation of Software Rejuven-
ation in Cluster Systems. Proc. of the
Joint Intl. Conference on Measure-
ment and Modeling of Computer
Systems, ACM SIGMETRICS 2001/
Performance 2001, Cambridge, MA,
June 2001.

7. Tai, A.T., L. Alkalai, and S.N. Chau.
“Onboard Preventive Maintenance: A
Design-Oriented Analytic Study for
Long-Life Applications.” Performance

August 2004 www.stsc.hill.af.mil 25

Software Rejuvenation 

“Recent experiments at
Stevens Institute of

Technology showed that
data link protocols

suffering memory leak
failures could be made

reliable using
rejuvenation libraries

without having to fix the
memory leak bug.”



Evaluation 35.3-4 (June 1999): 215-
232.

8. Bernstein, L., Y.D. Yao, and K. Yao.
“Software Rejuvenation: Avoiding
Failures Even When There Are
Faults.” The DoD SoftwareTECH
News 6.2 (Oct. 2003): 8-11 <www.
softwaretechnews.com>.

9. General Accounting Office. “B-
247094, Report to the House of
Representatives.” Washington, D.C.:
GAO, Information Management and
Technology Division, 4 Feb. 1992
<www.fas.org/spp/starwars/gao/im9
2026.htm>.

10. Bao, Y., X. Sun, and K. Trivedi.
Adaptive Software Rejuvenation:
Degradation Models and Rejuvenation
Schemes. Proc. of The International
Conference on Dependable Systems
and Networks, San Francisco, CA,
June 2003.

Notes
1. We use the terms errors, faults, and bugs

interchangeably for software systems
in this article, even though there are
some subtle differences in academic
literature.

2. Software decay, sometimes called
aging, is not the same as software
obsolescence due to changing require-
ments from the system.

3. Go to <www.computerworld.com>
and enter 43636 in QuickLink box, or
click on <www.computerworld.com/
softwaretopics/software/story/0,1080
1,88872,00.html>.

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering August 2004

About the Authors

Chandra M.R. Kintala,
Ph.D., is a distinguished
service professor at
Stevens Institute of
Technology. Prior to
that, he served as vice

president of the Network Software
Research and Realization Center in
Avaya Labs, a spin-off from Bell Labs.
Previously, he was director of
Distributed Software Research in Bell
Labs. Kintala has done pioneering
research on Software-implemented Fault
Tolerance (SwiFT) for software-imple-
mented fault tolerance and software
rejuvenation. He received a
ComputerWorld-sponsored Smithsonian
medal for SwiFT in Lucent in 1998.
Under his management, his groups cre-
ated ExpertNet for enterprise network
Voice over Internet Protocol assess-
ment, and Gryphon for network layers
4-7 switch, etc. He has over 40 research
publications and five software patents.

Stevens Institute of Technology
Hoboken, NJ 07030
Phone: (908) 580-0991
Cell Phone: (908) 418-7455
E-mail: chandra@kintala.com

Lawrence Bernstein is
a professor of Software
Engineering at Stevens
Institute of Technology.
He is a member of the
board of the Center for

National Software Studies and director
of the New Jersey Center for Software
Engineering. Bernstein is an expert wit-
ness in arbitration cases where he assess-
es the quality and origins of a large soft-
ware system. He spent 35 years at Bell
Laboratories as chief technical officer
managing large software projects.
Bernstein holds eight software patents,
has given 24 talks, published one book,
and has written 58 articles on software
engineering. He conceived of the notion
of software rejuvenation, encouraged
work on studying the dynamic behavior
of software, applied and extended soft-
ware management techniques, and led
the work on adopting intermediate level
languages in support of military soft-
ware development.

Stevens Institute of Technology
Hoboken, NJ 07030
Phone: (973) 258-9213
Cell Phone: (862) 485-0814
E-mail: lbernstein@worldnet.

att.net

INCOSE
www.incose.org
The International Council on Systems Engineering (INCOSE)
was formed to develop, nurture, and enhance the interdiscipli-
nary approach and means to enable the realization of successful
systems. INCOSE works with industry, academia, and govern-
ment to disseminate systems engineering knowledge, promote
collaboration in systems engineering, establish integrity in sys-
tems engineering standards, and encourage research and educa-
tional support for systems engineering processes and practices.

Where in Federal Contracting?
www.wifcon.com
Where in Federal Contracting? is a free, noncommercial site
that serves the federal and state acquisition and the federal assis-
tance community, including public and private organizations. It
provides quick access to acquisition and assistance information
such as contract laws and pending legislation, current and pro-
posed regulations, courts and boards of contract appeals, bid

protest decisions, contracting newsletters, selected analysis of
federal acquisition issues, federal assistance policy, daily listings
of grants and cooperative agreements, archived listings of grants
and cooperative agreements, and federal assistance sites.

Practical Software and Systems
Measurement
www.psmsc.com
Practical Software and Systems Measurement (PSM): A
Foundation for Objective Project Management was developed
to meet today's software and system technical and management
challenges. The Department of Defense and the U.S. Army
sponsor PSM. The goal of the project is to provide project man-
agers with the objective information needed to successfully meet
cost, schedule, and technical objectives on programs. The PSM
is based on actual measurement experience on DoD, govern-
ment, and industry programs. The PSM supports current soft-
ware and system acquisition and measurement policy.

WEB SITES


