
By incorporating automation into workflows,

communities are making it easier and faster

to identify and remediate vulnerabilities.

octoverse.github.com

By incorporating automation into workflows,

communities are making it easier and faster

to identify and remediate vulnerabilities.

octoverse.github.comoctoverse.github.com

By incorporating automation into workflows,

communities are making it easier and faster

to identify and remediate vulnerabilities.

http://octoverse.github.com

 ON OFFOFF ON

The 2020 State of the

OCTOVERSE

In this report, we investigate open source security:

how many projects rely on open source software,

the likelihood of having a vulnerability, and best

practices for remediation.

Open source security

Lifecycle of open source vulnerabilities

Glossary

More secure with automation

Acknowledgements

Appendix

Securing
the world's
software

Executive summary03

09

18

28

24

29

30

//table of contents

Finding
Balance

Empowering
communities

Productivity report ➜

Community report ➜

03

12_Too malicious to be mistakes: bugdoors and backdoors

14_How vulnerabilities are scored

20_The worst vulnerabilities of 2020

Convert to print version ➜

https://octoverse.github.com//static/2020-productivity-report.pdf
https://octoverse.github.com//static/2020-community-report.pdf
https://octoverse.github.com//static/2020-productivity-report.pdf
https://octoverse.github.com//static/2020-community-report.pdf

The 2020 State of the Octoverse | No 3

03 Securing the world's software

Executive
summary

Open source is the connective tissue for much of the

information economy. You would be hard-pressed to find

a scenario where your data does not pass through at least

one open source component. Many of the services and

technology we all rely on, from banking to healthcare, also

rely on open source software. The artifacts of open source

code serve as critical infrastructure for much of the global

economy, making the security of open source software

mission-critical to the world.

59%
chance of getting a security alert in the
next year on any active repository with
supported package ecosystems

The 2020 State of the Octoverse | No 3

04 Securing the world's software

//executive summary

As the largest platform for open source

in the world, GitHub is in a unique

position to analyze open source software

dependencies and the impact of

vulnerabilities in those dependencies,

and to alert users to address them at scale.

Our visibility into vulnerability reporting,

alerting, and remediation at GitHub scale

allows us to identify important trends in

open source security.

The analysis in this section of the

Octoverse report pulls together a

unique and cohesive picture of open

source security and the lifecycle of a

vulnerability, identifying key opportunities

where we, as a community, can improve

the security of open source. It also

identifies areas where software teams

can focus resources to improve. 17%
of vulnerabilities are explicitly
malicious but triggered
just 0.2% of alerts

The 2020 State of the Octoverse | No 3

05 Securing the world's software

//executive summary

Most projects on GitHub rely
on open source software.
We see the most frequent use of open source

dependencies in JavaScript (94%), Ruby (90%),

and .NET (90%).

Automation accelerates open
source supply chain security.
Repositories that automatically generate

a Dependabot pull request patch their software

13 days sooner, or 1.4 times faster, than those that

don’t. This is one way that teams can “shift left,” by

building security into development workflows and

amplifying the impact of security findings.

Security vulnerabilities often
go undetected for more than
four years before being disclosed.
Once they are identified, the package maintainer

and security community typically create and

release a fix in just over four weeks. This highlights

the opportunities to improve vulnerability detection

in the security community.

Active repositories with a supported
package ecosystem have a 59%
chance of getting a security alert
in the next 12 months.
Ruby (81%) and JavaScript (73%) repositories

were the most-likely to receive an alert in the

last 12 months. Our analysis also breaks down

advisories by severity.

Most software vulnerabilities are
mistakes, not malicious attacks.
Analysis on a random sample of 521 advisories

from across our six ecosystems found that 17% of

the advisories were related to explicitly malicious

behavior such as backdoor attempts. These malicious

vulnerabilities were generally in seldom-used packages,

but triggered just 0.2% of alerts. While malicious attacks

are more likely to get attention in security circles, most

vulnerabilities are caused by mistakes.

01

03

02

04

05

Key
 findings

The 2020 State of the Octoverse | No 3

06 Securing the world's software

//executive summary

Take these actions to protect

against vulnerabilties.

Check your dependencies for
vulnerabilities regularly.
The first step is knowing, and you can’t patch

what you don’t know about. Few people have

alerts enabled for private repositories, but that

can leave you open to threats. With automated

alerting, companies and open source projects

can stay up to date on security vulnerabilities,

information, and patches.

Use automation to remediate
vulnerabilities and stay secure.
Using automated alerting and patching tools to

secure software quickly means attack surfaces

are evolving, making it harder for attackers to

exploit. Repositories that automatically generate

pull requests to update vulnerable dependencies

patch their software 1.4 times faster than those

who don’t. Automating security practices helps your

team secure your code as developers share their

expertise with their community, remove security

and engineering silos, and scale their expertise.

Participate in the community
if you have a security team.
Open source is critical infrastructure, and we

should all contribute to the security of open source

software. One way to contribute is by looking for

security vulnerabilities in the open source code

you use, and reporting any you find privately to the

maintainers. Another way to contribute is by using

CodeQL to search your own code for vulnerabilities,

then share your query to help others do the same.

Remediate vulnerabilities quickly
and keep your code base current.
Patch your software early and often to secure it with

known security remediations. Delays in remediation

can leave you open to exploits, and may cause difficulty

with future patches that rely on previous updates. You

should also update your codebase to the latest version

in a timely manner to benefit from security updates

and community expertise. Small delays quickly add

up to years, and falling behind can make a significant

difference in availability of patches (the most common

version of a dependency is probably the most secure,

and less-common versions will have fewer eyes);

maintenance (older versions will have less open

source support, so you’ll be doing it all yourself); and

even recruiting (no one wants to work on out-of-date

versions that don’t have current support or examples).

01

03

02

04

Take
 action

https://dependabot.com/blog/the-latest-dependency-version-is-probably-the-most-secure/
https://dependabot.com/blog/the-latest-dependency-version-is-probably-the-most-secure/

The 2020 State of the Octoverse | No 3

07 Securing the world's software

//executive summary

The data for this section comes from GitHub’s

dependency security features and the six package

ecosystems supported. The period of comparison

is October 1, 2019 to September 30, 2020 vs.

October 1, 2018 to September 30, 2019.

The analysis in this section of the report is based on over

45,000 repositories that meet the following criteria:

• Use one of the six supported package ecosystems

• Are active repositories, which is defined as having at least
one contribution in each month from October 2018 through
September 2020. This means repositories are only included
in the analysis if they were active across two years, thereby
excluding new repositories.

• Have dependency graph enabled, which is predominantly
public repositories where this is enabled by default

• Are not a fork, classified as spammy, or owned by GitHub staff

Data for
 this report

The 2020 State of the Octoverse | No 3

08 Securing the world's software

//executive summary

Throughout this section of the report, we reference package ecosystems.

A package ecosystem is a collection of libraries packaged in a consistent

way in order to make their reuse easy. Most programming languages have

a single package ecosystem even if they have more than one package

manager.

Our report includes data on the package ecosystems listed, based on

the data we have available. For example, our analysis does not include

data from Java repositories that use the Gradle package manager, or from

Python repositories that use Poetry or Conda. While this presents some

limitations, we can still gain interesting and meaningful insight into

security and best practices.

Package ecosystem Language

 Composer

 Maven

 npm

 NuGet

 PyPI

 RubyGems

The package ecosystems we

include in our report and the

languages they represent

PHP

Java

JavaScript

.NET

Python

Ruby

https://docs.github.com/en/free-pro-team@latest/github/visualizing-repository-data-with-graphs/about-the-dependency-graph#supported-package-ecosystems

The 2020 State of the Octoverse | No 3

09 Securing the world's software

evelopers worry about introducing

security flaws, but that is a risk any time

you write code or add a new dependency.

Open
source
security

D
The opposite is also a risk: Stale code and outdated

dependencies mean attackers have time to methodically

attack a system by leveraging every known vulnerability.

Malicious attacks exploit flaws in code, and as a result,

developers are embracing proactive detection and

automation to prevent or limit the impact a bug can

have in production. To be successful, we need to

consider all vulnerabilities in our code: both the code

we write, and the open source software we depend on.

The 2020 State of the Octoverse | No 3

10 Securing the world's software

Percent of active public repositories
that use open source software

Surface area
Security vulnerabilities can impact software directly or through

its dependencies—any code referenced and bundled to make

a software package work. That is, code may be vulnerable

either because it contains vulnerabilities, or because it relies

on dependencies that contain vulnerabilities. In modern

software, 80% or more of most applications’ code comes

from dependencies, so we looked at package ecosystems and

their typical dependency characteristics.

First, we report the percentage of repositories that reference at

least one open source dependency. We see the most frequent

use of open source in JavaScript (94%), Ruby (90%), and .NET

(90%). We note that Java is likely lower in our dataset because

dependency information from repositories using Gradle as

a package manager is not available to us. This is about what

we would expect, given the way these programs are written

and bundled.

In its simplest form, a vulnerability is any weakness that

can be exploited by an attacker, and can include internal

controls, security procedures, implementation, and flaws

in computer systems. For this analysis, we focus on

vulnerabilities that can be exploited through software.

JavaScript

https://www.sonatype.com/hubfs/SSC/2019%20SSC/SON_SSSC-Report-2019_jun16-DRAFT.pdf

The 2020 State of the Octoverse | No 3

11 Securing the world's software

Within each repository, we examine the number of

dependencies1 for each package ecosystem. When

examining direct dependencies, we find that across all

repositories, JavaScript has the highest number of median

dependencies (10), followed by Ruby and PHP (nine), and

Java (eight), with .NET and Python having the least (six).

This shows some variability in median direct dependencies

across languages, but not much.

But direct dependencies aren’t the whole story. Each

direct dependency can itself have dependencies, which

may in turn have further dependencies, and so on. We

refer to any dependencies that are not “direct” as “transitive

dependencies.” For languages that include details of their

transitive dependencies in lockfiles, and of the repositories

with lockfiles,2 JavaScript has the highest number of median

dependencies at 683,3 followed by PHP (70), Ruby (68),

and Python (19).

Median direct and transitive dependencies
per repository by package ecosystem

Note that we have no data on transitive

dependencies for Java and .NET (as noted by the “?”

in the graphic), and the transitive dependencies

bar represents the median exclusively for

repositories containing a lockfile.

1 We proxied for direct dependencies by looking for manifest files for that
ecosystem (Gemfile, packages.json, pom.xml, etc.) that are not lockfiles. We
proxied for direct and transitive dependencies by looking for a lockfile (matching
the form “.lock” or “-lock.json”).

2 This includes data for JavaScript (npm), Ruby (RubyGems), PHP (Composer)
and Python (for repositories using Pipenv), but not data for the Java (Maven)
or .NET (NuGet) ecosystems.

3 The order of magnitude difference in dependencies between JavaScript and
other languages is likely driven by npm’s philosophy of “micropackaging”
(packaging even one-liner functions as dependencies) together with the small
size of the JavaScript standard library and the complex environment in which
JavaScript is often used (the web browser). Micropackages are rarely used in
applications (i.e., as direct dependencies) but commonly used in libraries, so
they show up as transitive dependencies.

Finding balance Between work and play

The 2020 State of the Octoverse | No 1

12

Too malicious to be mistakes:
bugdoors and backdoors
Backdoors are software vulnerabilities that are intentionally planted

in software to facilitate exploitation. Bugdoors are a specific type

of backdoor that disguise themselves as conveniently exploitable

yet hard-to-spot bugs, as opposed to introducing explicitly

malicious behavior.

The ambiguous nature of backdoors makes them tricky to

qualify and establishing intent can be especially challenging.

A good backdoor can be indistinguishable from a normal

programming mistake. As such, we need to rely on additional

indicators to determine the intent of a suspected backdoor event.

The most blatant indicator of a backdoor is an attacker gaining

commit access to a package’s source code repository, usually

via an account hijack, such as 2018’s ESLint attack, which used

a compromised package to steal a user’s credentials for the npm

package registry. The last line of defense against these backdoor

attempts is careful peer review in the development pipeline,

especially of changes from new committers. Many mature projects

have this careful peer review in place. Attackers are aware of that,

so they often attempt to subvert the software outside of version

control at its distribution points or by tricking people into grabbing

malicious versions of the code through, for example, typosquatting

a package name.

Analysis on a random sample of 521 advisories from across our six

ecosystems finds that 17% of the advisories are related to explicitly

malicious behavior such as backdoor attempts. Of those 17%, the vast

majority come from the npm ecosystem. While 17% of malicious attacks

will steal the spotlight in security circles, vulnerabilities introduced by

mistake can be just as disruptive and are much more likely to impact

popular projects. Out of all the alerts GitHub sent developers notifying

them of vulnerabilities in their dependencies, only 0.2% were related

to explicitly malicious activity. That is, most vulnerabilities were simply

those caused by mistakes.

A big part of the challenge of maintaining trust in open source is assuring

downstream consumers of code integrity and continuity in an ecosystem

where volunteer commit access is the norm. This requires better

understanding of a project’s contribution graph, consistent peer review,

commit and release signing, and enforced account security through

multi-factor authentication (MFA).

Empowering healthy communities

The 2020 State of the Octoverse | No 2

Securing the world's software

The 2020 State of the Octoverse | No 3

12

Too malicious to be mistakes:
bugdoors and backdoors
Backdoors are software vulnerabilities that are intentionally planted

in software to facilitate exploitation. Bugdoors are a specific type

of backdoor that disguise themselves as conveniently exploitable

yet hard-to-spot bugs, as opposed to introducing explicitly

malicious behavior.

The ambiguous nature of backdoors makes them tricky to

qualify and establishing intent can be especially challenging.

A good backdoor can be indistinguishable from a normal

programming mistake. As such, we need to rely on additional

indicators to determine the intent of a suspected backdoor event.

The most blatant indicator of a backdoor is an attacker gaining

commit access to a package’s source code repository, usually

via an account hijack, such as 2018’s ESLint attack, which used

a compromised package to steal a user’s credentials for the npm

package registry. The last line of defense against these backdoor

attempts is careful peer review in the development pipeline,

especially of changes from new committers. Many mature projects

have this careful peer review in place. Attackers are aware of that,

so they often attempt to subvert the software outside of version

control at its distribution points or by tricking people into grabbing

malicious versions of the code through, for example, typosquatting

a package name.

Analysis on a random sample of 521 advisories from across our six

ecosystems finds that 17% of the advisories are related to explicitly

malicious behavior such as backdoor attempts. Of those 17%, the vast

majority come from the npm ecosystem. While 17% of malicious attacks

will steal the spotlight in security circles, vulnerabilities introduced by

mistake can be just as disruptive and are much more likely to impact

popular projects. Out of all the alerts GitHub sent developers notifying

them of vulnerabilities in their dependencies, only 0.2% were related

to explicitly malicious activity. That is, most vulnerabilities were simply

those caused by mistakes.

A big part of the challenge of maintaining trust in open source is assuring

downstream consumers of code integrity and continuity in an ecosystem

where volunteer commit access is the norm. This requires better

understanding of a project’s contribution graph, consistent peer review,

commit and release signing, and enforced account security through

multi-factor authentication (MFA).

https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes

Additional data: security advisories

At this stage of the analysis, we include an additional source of data:

GitHub Advisory Database, which contains a curated list of security

vulnerabilities that have been mapped to packages tracked by the

GitHub dependency graph.

The advisories in this report come from two sources: external

ecosystems, which make up 54% of the advisories in our analysis,

and maintainer-reported GitHub Security Advisories, which since

their introduction in May 2019 already make up the remaining 46%.

External ecosystems include the National Vulnerability Database,

RubySec, FriendsOfPHP, and a few other sources that are used

occasionally. GitHub carefully verifies third-party feed advisories as

well as any maintainer-published advisories for inclusion in the

Advisory Database. We evaluate severity, confirm affected version

ranges, and check any remediation recommendations.

GitHub Security Advisories allow maintainers to describe, fix, and

announce vulnerabilities in their code directly on GitHub. GitHub

reviews all published Security Advisories and, whenever appropriate,

issues Common Vulnerabilities and Exposures (CVE) IDs for those

vulnerabilities. This causes them to be published to the National

Vulnerability Database and thus widely available to the global software

community. We can do this because we are a CVE Numbering Authority,

or CNA. igh, and Critical.

Securing the world's software

The 2020 State of the Octoverse | No 3

Additional data: security advisories

At this stage of the analysis, we include an additional source of data:

GitHub Advisory Database, which contains a curated list of security

vulnerabilities that have been mapped to packages tracked by the

GitHub dependency graph.

The advisories in this report come from two sources: external

ecosystems, which make up 54% of the advisories in our analysis,

and maintainer-reported GitHub Security Advisories, which since

their introduction in May 2019 already make up the remaining 46%.

External ecosystems include the National Vulnerability Database,

RubySec, FriendsOfPHP, and a few other sources that are used

occasionally. GitHub carefully verifies third-party feed advisories as

well as any maintainer-published advisories for inclusion in the

Advisory Database. We evaluate severity, confirm affected version

ranges, and check any remediation recommendations.

GitHub Security Advisories allow maintainers to describe, fix, and

announce vulnerabilities in their code directly on GitHub. GitHub

reviews all published Security Advisories and, whenever appropriate,

issues Common Vulnerabilities and Exposures (CVE) IDs for those

vulnerabilities. This causes them to be published to the National

Vulnerability Database and thus widely available to the global software

community. We can do this because we are a CVE Numbering Authority,

or CNA.

The 2020 State of the Octoverse | No 3

13 Securing the world's software

-->

TOC

New advisories
Vulnerabilities are reported through advisories, which are

available in public databases. This helps developers and

open source maintainers secure their software by

providing information about issues, fixes, patches, and

updates in a centralized location.

Here we see that npm and Maven have the highest

percentage of advisories in the GitHub Advisory Database,4

with 26% and 23.8%, respectively, and NuGet has the

fewest (1.2%). But not all advisories are created equal, as

seen when we look at severity.

4 Our initial analysis included a large import of npm advisories to the Advisory
Database, when the npm security database was merged into the GitHub
Advisory Database following GitHub’s acquisition of npm. This import included
738 advisories, and accounted for 24% of the advisories in the database,
dominating many trends we were exploring. We exclude this large import from
our analysis to ensure the reporting speaks to trends observed generally, but
note when npm exhibits different patterns in our analysis. The distribution of
advisories by package ecosystem is shown without the large npm import.

Advisories by package ecosystem

24+26+20+17+12+1+ARubyGems

npm

26.0%

11.5% NuGet

1.2%

Composer

17.7%

PyPI

19.8%
Maven

23.8%

https://docs.github.com/en/free-pro-team@latest/github/managing-security-vulnerabilities/browsing-security-vulnerabilities-in-the-github-advisory-database#about-the-github-advisory-database
https://docs.github.com/en/free-pro-team@latest/github/managing-security-vulnerabilities/browsing-security-vulnerabilities-in-the-github-advisory-database#about-the-github-advisory-database
https://github.blog/changelog/2019-05-23-maintainer-security-advisories/
https://nvd.nist.gov/
https://github.com/rubysec/ruby-advisory-db
https://github.com/FriendsOfPHP/security-advisories
https://github.com/github/advisory-database/blob/master/docs/cve_ingestion/known_sources_for_advisories.md
https://docs.github.com/en/free-pro-team@latest/github/managing-security-vulnerabilities/browsing-security-vulnerabilities-in-the-github-advisory-database#about-the-github-advisory-database
https://docs.github.com/en/free-pro-team@latest/github/managing-security-vulnerabilities/browsing-security-vulnerabilities-in-the-github-advisory-database#about-the-github-advisory-database
https://github.blog/changelog/2019-05-23-maintainer-security-advisories/
https://nvd.nist.gov/
https://github.com/rubysec/ruby-advisory-db
https://github.com/FriendsOfPHP/security-advisories
https://github.com/github/advisory-database/blob/master/docs/cve_ingestion/known_sources_for_advisories.md
https://github.blog/changelog/2020-09-08-github-advisory-database-contains-all-npm-security-advisories/
https://github.blog/changelog/2020-09-08-github-advisory-database-contains-all-npm-security-advisories/

How vulnerabilities are scored

Except for the relatively small proportion of vulnerabilities that

are known to be actively exploited in the wild, “severity” is a

somewhat subjective concept. Usually, a severity score is assigned

by a security expert who looks at the available information and makes

a judgment call.

A commonly used tool to help standardize is the Common Vulnerability

Scoring System (CVSS). An online CVSS calculator is available from

the National Vulnerability Database, (NVD). Four levels are defined in

the Common Vulnerability Scoring System (CVSS 3.1): Low, Moderate,

High, and Critical. A vulnerability's level depends on factors such as how

difficult it is to exploit and how large the impact of a successful exploit

could be.

It is relatively easy to assign an accurate score when the vulnerability

is in a widely used application and a working proof-of-concept exploit

(PoC) is available. But the scoring becomes much more subjective

when there is no PoC available, or when the vulnerability is in a library,

which means that the exploitability depends on how the library is used.

Like all CVE Numbering Authorities, GitHub strives to objectively follow

the CVSS when assigning a severity. We also work proactively with NVD

on the CVMAP process, which uses US government security researchers

to objectively evaluate severity scores across all vulnerabilities

submitted to the NVD.l.

Securing the world's software

The 2020 State of the Octoverse | No 3

How vulnerabilities are scored

Except for the relatively small proportion of vulnerabilities that

are known to be actively exploited in the wild, “severity” is a

somewhat subjective concept. Usually, a severity score is assigned

by a security expert who looks at the available information and makes

a judgment call.

A commonly used tool to help standardize is the Common Vulnerability

Scoring System (CVSS). An online CVSS calculator is available from

the National Vulnerability Database, (NVD). Four levels are defined in

the Common Vulnerability Scoring System (CVSS 3.1): Low, Moderate,

High, and Critical. A vulnerability's level depends on factors such as how

difficult it is to exploit and how large the impact of a successful exploit

could be.

It is relatively easy to assign an accurate score when the vulnerability

is in a widely used application and a working proof-of-concept exploit

(PoC) is available. But the scoring becomes much more subjective

when there is no PoC available, or when the vulnerability is in a library,

which means that the exploitability depends on how the library is used.

Like all CVE Numbering Authorities, GitHub strives to objectively follow

the CVSS when assigning a severity. We also work proactively with NVD

on the CVMAP process, which uses US government security researchers

to objectively evaluate severity scores across all vulnerabilities

submitted to the NVD.

The 2020 State of the Octoverse | No 3

14 Securing the world's software

-->

TOC

Here we see that npm has the most critical (n=23) and high

(n=66) advisories, and that Maven has the most moderate

advisories (n=86). RubyGems has no critical advisories and

overall, NuGet has the fewest advisories.5

Advisories by package ecosystem and severity

5 Whereas other ecosystems have detailed, community-curated ecosystem
sources for their advisories, these are still fairly limited for NuGet and critically,
are not machine readable. So although NuGet seems to have fewer advisories
than other ecosystems, that doesn’t necessarily mean it’s safer.

https://nvd.nist.gov/
https://www.first.org/cvss/specification-document
https://nvd.nist.gov/General/News/NVD-Release-of-CVMAP
https://nvd.nist.gov/
https://www.first.org/cvss/specification-document
https://nvd.nist.gov/General/News/NVD-Release-of-CVMAP

The 2020 State of the Octoverse | No 3

15 Securing the world's software

Percentage of active repositories that
received Dependabot alerts

Security alerts
An important part of the vulnerability remediation process

is understanding and tracking software inventory, matching

against security advisories, and then alerting when relevant

vulnerabilities appear. This involves identifying the vulnerable

component and the corresponding vulnerability so teams can

take the appropriate action to ensure their code is secure.

Additional data: alerting

We now add an additional source of data to our analysis:

Dependabot. Dependabot alerts developers to vulnerable

dependencies in public repositories by default, and

developers may opt out. In contrast, private repositories

are opt-in, and developers must enable Dependabot

alerts at the individual or organization level. Because

of this, not all repositories get alerts. For this analysis,

we capture alerts that were sent to developers.

Overall, active repositories with a supported package ecosystem

have a 59% chance of getting a security alert. Broken down by

package ecosystem, we see the repositories most likely to get

an alert use RubyGems (81%) and npm (73%).

59%
weighted
average

JavaScript

The 2020 State of the Octoverse | No 3

16 Securing the world's software

Advisories by severity level and automated alerts
by severity level (via Dependabot)

Here we see a breakdown of advisories by severity

level and automated alerts by severity level. Note they

differ somewhat from the proportions of advisories we

see in the Advisory Database. The biggest differences

lie in low severity (24% of alerts, which is higher than

the proportion of advisories in the Advisory Database)

and critical severity (two percent of alerts, which is a

lower proportion than the advisories in the Advisory

Database). This means that users are receiving a

disproportionate amount of alerts for lower-severity

vulnerabilities, although this could mean that without

sufficient differentiation, the rare, more-severe alerts

drown out in the noise. It also means that the most

critical vulnerabilities aren’t occurring in as widespread

components, and so affect fewer users from the get-go.

To see how security alerts are distributed across package

ecosystems, and how they differ from the advisories

available in the Advisory Database, we show both

distributions.

The 2020 State of the Octoverse | No 3

17 Securing the world's software

Alerts per package ecosystem
We break down alerts per package ecosystem for the previous

year, and see that the severity of a vulnerability found in a

dependency is not very correlated with how many people

use that dependency.

Over the last 12 months, the vulnerabilities found in the

most-used npm packages were low or moderate severity.

It’s tempting to conclude that severity is negatively correlated

with popularity, perhaps lending credibility to the theory that

many eyes make all bugs shallow—meaning the most critical

vulnerabilities are caught in code review. However, a quick

look at the severity distribution for Composer alerts is enough

to dissuade us of that misconception; It had critical and

high-severity vulnerabilities in its biggest packages. The truth

appears to be that it is just as easy for a critical-severity

vulnerability to make it through code review as a low-severity one.

The 2020 State of the Octoverse | No 3

18 Securing the world's software

ecurity vulnerabilities are an important

part of software development and

delivery, and application security
S

professionals help teams and organizations secure

their code and systems. In this section, we look at

the lifecycle of a vulnerability and show how best

practices can help remediate vulnerabilities faster,

resulting in more secure and reliable software.

Lifecycle of
 open source
 vulnerabilities

The 2020 State of the Octoverse | No 3

19 Securing the world's software

The four steps to open source vulnerability remediation are:

1 A vulnerability is identified and reported.

2 The maintainer fixes the vulnerability and

releases a new version.

3 Security tooling alerts end users of a security update.

4 Developers update to the fixed version.

Anyone in the open source community can identify a vulnerability

(step one), though it is usually security researchers. Maintainers

then take the lead on creating a fix and releasing a security

update (step two). End users of the dependency are notified

(step three) after the maintainer or a security researcher

requests a CVE for the vulnerability and security tools add it to

their databases. Those end users then update their code to use

the newly released fixed version (step four).

The full lifecycle of a vulnerability

A vulnerability typically goes undetected for 218 weeks

(just over four years6) before being disclosed.7 From there,

it typically takes 4.4 weeks for the community to identify

and release a fix for the vulnerability, and then 10 weeks

to alert on the availability of a security update.8 We find that

for repositories that do apply the fix, it typically takes one

week to resolve.9 There is an opportunity to shorten the life

of a vulnerability by focusing efforts on time to detect. This

highlights two things: the importance of focusing efforts on

time to detect, and that there are likely a large number of

undiscovered vulnerabilities in our open source software

today. If our development efforts introduce them at a

constant rate, the rate of discovery significantly lags

behind the rate of introduction.

There are differences by package ecosystem, advisory

database, and which method a security team uses for alerts

and remediations. We’ll investigate each stage in more detail,

with our analysis focusing on RubyGems and npm because

of the ample data available.

6 Four years may seem like a long time before a vulnerability is detected, but it’s not unheard
of. While different from our own analysis of all vulnerabilities, RAND reports that zero-day
vulnerabilities—those that are unknown to anyone but hackers who can exploit them—typically
go undetected for five years.

7 The method used to proxy the timeline for a vulnerability to be discovered likely skews long.
Because fixes are often applied to code “at or before version X,” we captured the timeline for
all of those potentially affected versions. While the vulnerability is often introduced in a commit
much closer to the fixed version, it’s infeasible to identify without root cause analysis, and not at
scale for the purposes of this report.

8 These ten weeks to alert are the result of many factors, including times for import and curation
across several communities.

9 For this analysis, we focused on the first 25% of active repositories to patch their software;
this represents a typical timeline for repositories that intend to update.

undetected vulnerability

weeks

https://www.rand.org/content/dam/rand/pubs/research_reports/RR1700/RR1751/RAND_RR1751.pdf

Finding balance Between work and play

The 2020 State of the Octoverse | No 1

20

Vulnerability introduced

Lodash version 0.1.0 is released

with unidentified vulnerability

Vulnerability fixed

Lodash version 4.17.19 is released

containing a fix for vulnerability

Dependabot alerts sent

5.1 million alerts are sent to users

on GitHub that are dependent on

all vulnerable versions of lodash

Users upgrade to fix version

43% of active repos* have upgraded from

a vulnerable version to lodash 4.17.19

The worst vulnerabilities
of 2020

Which vulnerability is the worst as of November 2020? It depends

on how you define “worst.” Some obvious candidates are

CVE-2020-0601 (aka Curveball), CVE-2020-0796 (aka SMBGhost),

and CVE-2020-1472 (aka Zerologon). These vulnerabilities were

severe in terms of the number of developers they affected and their

potential impact on vulnerable networks and endpoints. These could

be the worst because they are severe vulnerabilities that require

urgent attention from systems administrators.

But another definition of worst is the vulnerability that has the most

impact on project maintainers. By this definition, a strong candidate

for most-impactful bug of the year is CVE-2020-8203 (Prototype

Pollution in lodash). That vulnerability is single-handedly responsible

for over five million Dependabot alerts. That’s because lodash is

one of the most widely used npm packages. Furthermore, Prototype

pollution is a potentially severe vulnerability, which in the worst case

could lead to remote code execution where the zipObjectDeep

method is used. Developers are strongly advised to upgrade to the

latest version of lodash.

Timeline for lodash vulnerability

* An active repo is defined as one with a push in the week before the Dependabot alerts were sent out

Empowering healthy communities

The 2020 State of the Octoverse | No 2

Securing the world's software

The 2020 State of the Octoverse | No 3

20

Vulnerability introduced

Lodash version 0.1.0 is released

with unidentified vulnerability

Vulnerability fixed

Lodash version 4.17.19 is released

containing a fix for vulnerability

Dependabot alerts sent

5.1 million alerts are sent to users

on GitHub that are dependent on

all vulnerable versions of lodash

Users upgrade to fix version

43% of active repos* have upgraded from

a vulnerable version to lodash 4.17.19

* An active repo is defined as one with a push in the week before the Dependabot alerts were sent out

The worst vulnerabilities
of 2020

Which vulnerability is the worst as of November 2020? It depends

on how you define “worst.” Some obvious candidates are

CVE-2020-0601 (aka Curveball), CVE-2020-0796 (aka SMBGhost),

and CVE-2020-1472 (aka Zerologon). These vulnerabilities were

severe in terms of the number of developers they affected and their

potential impact on vulnerable networks and endpoints. These could

be the worst because they are severe vulnerabilities that require

urgent attention from systems administrators.

But another definition of worst is the vulnerability that has the most

impact on project maintainers. By this definition, a strong candidate

for most-impactful bug of the year is CVE-2020-8203 (Prototype

Pollution in lodash). That vulnerability is single-handedly responsible

for over five million Dependabot alerts. That’s because lodash is

one of the most widely used npm packages. Furthermore, Prototype

pollution is a potentially severe vulnerability, which in the worst case

could lead to remote code execution where the zipObjectDeep

method is used. Developers are strongly advised to upgrade to the

latest version of lodash.

Timeline for lodash vulnerability

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0601E-2020-0601
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0796
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-1472
https://github.com/advisories/GHSA-p6mc-m468-83gw
https://www.npmjs.com/package/lodash
https://portswigger.net/daily-swig/prototype-pollution-the-dangerous-and-underrated-vulnerability-impacting-javascript-applications
https://portswigger.net/daily-swig/prototype-pollution-the-dangerous-and-underrated-vulnerability-impacting-javascript-applications
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0601E-2020-0601
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0796
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-1472
https://github.com/advisories/GHSA-p6mc-m468-83gw
https://www.npmjs.com/package/lodash
https://portswigger.net/daily-swig/prototype-pollution-the-dangerous-and-underrated-vulnerability-impacting-javascript-applications
https://portswigger.net/daily-swig/prototype-pollution-the-dangerous-and-underrated-vulnerability-impacting-javascript-applications

The 2020 State of the Octoverse | No 3

21 Securing the world's software

Identify and fix a vulnerability
The time between a vulnerability being introduced into an

ecosystem and when security researchers and maintainers

identify a fix is typically seven years for RubyGems and five

years for npm. This is because software vulnerabilities often

go unnoticed and undetected. In addition, many teams may

lack the expertise—or simply the time—to find vulnerabilities in

their code, focusing on developing core functionality instead.

Looking at severity, we find that critical vulnerabilities

are disclosed faster. This is obviously good news, but it's not

immediately clear what drives this faster timeline, and is worth

more research.

Time to identify and fix a vulnerability,
distribution in years; npm and RubyGems

Time to identify and fix a vulnerability,
by severity

FOR SECURITY RESEARCHERS AND MAINTAINERS

years

ye
ar

s

The 2020 State of the Octoverse | No 3

22 Securing the world's software

Alert on availability
of security update
Time to alert is an important component for any security

professional, and beyond that, for their broader DevOps

teams. Other than finding the vulnerability themselves,

receiving an alert about a vulnerable dependency is the

first opportunity that teams have to respond. Once a fix is

discovered, the team can patch any vulnerable code and

upgrade impacted systems.

Time to alert differs based on where the advisory originates:

imported from external sources or submitted directly to the

GitHub Advisory Database. The difference stems from the

process used to submit advisories. Because the GitHub

Advisory Database receives submissions directly, maintainers

can draft an advisory even before the fix is ready, and obtain a

CVE directly from GitHub. Once published, this can send out

alerts much faster, typically within one week. In contrast,

imported advisories must go through other channels before

finally making it into the central repository, which can introduce

delays. These other channels may require passing through

several intermediaries in sequence, obtaining a CVE, publishing

a fix, and submitting to the NVD. The distribution of alerts shows

that repository advisories are strongly skewed toward fast

alerting, while imported advisories are typically alerted after

20 weeks and have a longer tail.

Weeks from fix version to Dependabot alerts sent
Cumulative distribution in weeks, time from vulnerability becoming
known (proxied by a fixed version being released) to inclusion
in the GitHub Advisory Database

The alerting mechanism and data we used for this

analysis comes from the GitHub Advisory Database

and Dependabot alerts.

weeks

FOR MAINTAINERS ON GITHUB

The 2020 State of the Octoverse | No 3

23 Securing the world's software

Remediate the security update
If software was a fairytale, teams would get an alert, install the

patch, and their systems would be secure. But software is

complex, and knowing a patch is available is often just a

beginning to remediation. Patching early and often is the best

security strategy, but isn’t always an option. Teams may need

to wait to ensure they don’t interrupt operations, may have too

many patches to merge at once, or may have to work around

features or legacy platforms that won’t yet support the patch.

Knowing that patching security vulnerabilities is not

straightforward, we investigated the time to remediate.

This analysis includes time to resolve an alert for any

repository that did resolve.

Cumulative percent of npm and RubyGems
Dependabot alerts resolved by severity over time

Across all repositories, both RubyGems and npm alerts see

resolution rates close to 20% resolved within a day. This rate

steadily increases over time, reaching about 30% resolved

within a month after alert.

Developers react faster to more severe issues, but the gap isn’t

huge—alerts of all severities see resolution rates close to 20%

resolved within a day. This rate steadily increases over time,

reaching about 30% resolved within a month after alert.

Cumulative percent of Dependabot alerts
resolved by severity over time

days after alert was sent

days after alert was sent

FOR DEVELOPERS USING OPEN SOURCE

The 2020 State of the Octoverse | No 3

24 Securing the world's software

s software getting more secure?

Are we getting better at alerting and

are teams getting better at resolving

More
 secure with
 automation I

found vulnerabilities? These are difficult to answer,

in part because software is growing and changing.

Software and systems are evolving as we build new

features and maintain our infrastructure, which

means our attack surfaces are evolving. This pushes

attackers to stay active and ready, because a surface

they have previously exploited could be replaced with

a new feature or patched at any time. At the same

time, new people are joining our teams and projects

and learning how to secure software and systems.

The 2020 State of the Octoverse | No 3

25 Securing the world's software

Automation, such as automatic dependency version

updates with Dependabot, provides another opportunity

for developers to secure their code. By automating security

practices, developers share their expertise with their

community, remove security and engineering silos,

and scale their expertise. It allows developers to explore

opportunities while providing critical infosec continuity.

And teams can leverage the power of the broader infosec

community to identify and remediate security vulnerabilities

in their codebases.

Many developers use open source to create and build projects

faster, and research by DORA finds that elite performers are

1.75 times more likely than low performers to make extensive

use of open source software.

While some worry that open source code may have unseen

dependencies and vulnerabilities, security is always a concern

when working with software. Our analysis shows that potential

vulnerabilities found11 scale with the number of lines of code

written. The power and promise of open source is in the power

of the community. By joining forces with millions of developers

to not only build software packages but also identify and fix

vulnerabilities, we can build software more quickly and more

securely. The key is to leverage automated alerting and

patching tools to secure your software quickly.

Potential vulnerabilities found in source code scale
with lines of code written

Are we introducing fewer vulnerabilities in the code

we write today than we did in the code we wrote in the

past? An analysis of commits to open source repositories

suggests not.

By running static analysis on historic commits to a project,

we can see when new potential vulnerabilities were introduced.

We ran CodeQL, GitHub’s static analysis security tool, on

each commit to several thousand popular open source

projects over a five year period to see if the rate at which

vulnerabilities are introduced has changed over time. The

result is the graph above, which suggests a line of code written

in 2020 is just as likely to introduce a security vulnerability as

one written in 2016.

11 These potential security vulnerabilities are static analysis alerts. The analysis
applies the same static analysis engine and queries to every commit to see how
the number of alerts changed over time. This represents a relatively unbiased proxy
for vulnerabilities.

https://services.google.com/fh/files/misc/state-of-devops-2018.pdf

The 2020 State of the Octoverse | No 3

26 Securing the world's software

Automating vulnerability
remediation: shifting left
DevSecOps professionals proclaim “shifting left” is a

superpower, saying that building security into the development

process amplifies the expertise of infosec professionals. But

how can these teams shift left and build in security?

Research from DORA points to automation that makes it easy

for teams to integrate security into the development process

as a predictor for high performance. Our own analysis found

that repositories that automatically generated a pull request

to update to the fixed version patched their software in 33

days, which is 13 days faster than those who did not, or 1.4
times faster. Using automation is an important best practice:

Teams who automate both the pull request and have in place

extensive continuous integration checks for security patches

report these are critical to fast updates.

Sonatype also found that high-performing software

development teams are 4.9 times more likely to successfully

update dependencies and fix vulnerabilities without breakage.

Percent of Dependabot alerts resolved by hour

hours since alert creation

https://services.google.com/fh/files/misc/state-of-devops-2018.pdf
https://www.sonatype.com/press-release-blog/2020-state-of-the-software-supply-chain

The 2020 State of the Octoverse | No 3

27 Securing the world's software

The security of
open source is

mission-critical

For more insights
about how we work

Finding
balance

Empowering
communities

Productivity report ➜

Community report ➜

Software security is everyone’s job.

And the effort is worth it: having good

automation and patching practices makes

it easier and safer to integrate fixes into

our development work.

https://octoverse.github.com//static/2020-productivity-report.pdf
https://octoverse.github.com//static/2020-community-report.pdf

The 2020 State of the Octoverse | No 3

28 Securing the world's software

The methodology and data

used for analysis is described

throughout the report

Active repository
An active repository is one that has at least one

contribution in each month during the time period

of analysis.

Dependency graph
This feature lists all dependencies for a repository

and helps identify known vulnerabilities.

Developers
Developers are individual accounts on GitHub,

regardless of their activity.

GitHub Advisory Database
An advisory database contains all curated CVEs

and security advisories that have been mapped to a

package tracked by the GitHub dependency graph.

Location
Country information for developers is based on

their last location, where known. For organizations,

we take the best-known location information either

from the organization profile or the most common

country organization members are active in. We only

use location information in aggregate form to look

at things like trends in growth in a particular country

or region. We don’t look at location information

granularity finer than country level.

Open source projects
Open source projects are public repositories

with an open source license.

Organizations

Organization accounts represent collections

of people on GitHub. These can be paid or free,

big or small, businesses or nonprofits.

Projects and repositories
We use projects and repositories interchangeably,

although we understand that sometimes a larger

project can span many repositories.

Vulnerabilities
This is a problem in a project's code that could be

exploited to damage the confidentiality, integrity,

or availability of the project or other projects that

use its code. Vulnerabilities vary in type, severity,

and method of attack.

Glossary

The 2020 State of the Octoverse | No 3

29 Securing the world's software

// acknowledgements

Many thanks to our data scientists,

contributors, and reviewers. Each is listed

alphabetically by type of contribution.

-

Authors: Nicole Forsgren

with contributions from Bas Alberts,

Kevin Backhouse, Grey Baker

Data Scientists: Bas Alberts, Grey Baker,

Greg Cecarelli, Derek Jedamski, Scot Kelly,

Clair Sullivan

Reviewers: Grey Baker, Dino Dai Zovi,

Denae Ford, Maya Kaczorowski, Alex

Mullans, Kelly Shortridge

Copyeditors: Leah Clark, Cheryl Coupé,

Stephanie Willis

Designers: Siobhán Doyle, Aja Shamblee

The 2020 State of the Octoverse | No 3

30 Securing the world's software

// appendix

Alerts sent for
each language,
log scale

Alerts sent for each advisory, log scale
(via Dependabot)

Read more on p17 ➜

	Table of Contents
	Executive Summary
	Key Findings
	Take action
	Data for this report

	Open source security
	Bugdoors and backdoors
	How vulnerabilites are scored

	Lifecycle of open source vulnerabilities
	The worst vulnerabilities of 2020

	Glossary
	Acknowledgements
	Appendix

	Button 13:
	Page 3:
	Page 19:

	Button 24:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:

	Button 9:
	Page 9:
	Page 18:
	Page 24:
	Page 27:
	Page 28:
	Page 29:

	Button 11:
	Page 10:
	Page 11:
	Page 15:
	Page 16:
	Page 17:
	Page 21:
	Page 22:
	Page 23:
	Page 25:
	Page 26:

	Button 14:
	Page 12:
	Page 20:

	Button 34:
	Page 13:
	Page 14:

	Button 23:
	Page 30:

