
1.1 Service Operations

A User makes a Service request by interacting through a local Client (via the MFD console) or through a
remote Client via its software application user interface. Each Service provides the same set of service
interfaces for the co-located local Client or a Remote Client. The Client can operate via a local interface, a
local area network, or the Internet.

The individual Service specifications identify all operations applicable to that Service, some of which may
be unique to that Service. The MFD Operations described in this section are common to more than one
Service, with the “<service>” component in the operation name identifying the specific Service to which
the operation request is addressed. To the extent these operations are implemented by a Service, they
MUST conform to the MFD Operation definitions in this section.

All operations consist of a Request issued by a client and a Response returned by the Service. All
Requests are sent to the target Service except Startup<service>Service, which is sent to the MFD
System. A Service MUST respond to every request addressed to it. Some responses may just indicate
that the request was or was not honored, perhaps with explanation messages; others will contain
requested or related information, perhaps with additional explanatory “reasons” information.

The MFP operations applicable to two or more Services are listed in Table along with references to their
antecedent Printer operations. The operations are, for the most part, derived from IPP Print Service
operations defined in RFC2911 [ref], REF3390[ref] and RFC3998 [ref] and further discussed in the PWG
IPP 2.0 document [ref] and the IPP Job and Printer Extensions-Set 2 document [ref]. The print specific
context has been extended to MFD Services. Several print operations have been omitted as inapplicable
to MFD Services as a whole, while a few operations have been added.

Table 1 MFD Common Operations and Antecedents

MDF Operation Antecedent IPP
Operation

Reference Access

Add<service>HardcopyDocument [New] User
Cancel<service>Document Cancel-Document [PWG5100.5] 4.5 User
Cancel<service>Job Cancel-Job [RFC2911] 3.3.3 User
Cancel<service>Jobs Cancel-Jobs [JPS2] 5.1 Admin
CancelCurrent<service>Job Cancel-Current-Job [RFC3998] 4.2 User
CancelMy<service>Jobs Cancel-My-Jobs [JPS2] 5.2 User

Close<service>Job Close-Job [JPS2] 5.3 User
Create<service>Job Create-Job

Print-Job
[RFC2911] 3.1.4

3.2.1
User

Disable<service>Service Disable-Printer [RFC3998] 3.1.1 Admin
Enable<service>Service Enable-Printer [RFC3998] 3.1.2 Admin
Get<service>DocumentElements Get-Document-Attributes [PWG5100.5] 4.3 User
Get<service>Documents Get-Documents [PWG5100.5] 3.3 User

Get<service>JobElements Get-Job-Attributes [RFC2911] 3.3.4 User
Get<service>JobHistory Get-Jobs (which-Jobs

element = ‘completed’)
[RFC2911] 3.2.6 User[W1]

Get<service>ServiceElements Get-Printer-Attributes,
Get-Printer-Supported-
Values

[RFC2911],
[RFC3380]

3.2.5 User

GetActive<service>Jobs Get-Jobs (which-jobs
element = ‘not-completed’)

[RFC2911] 3.2.6 User[W2]

Hold<service>Job Hold-Job [RFC2911] 3.3.5 User

MDF Operation Antecedent IPP
Operation

Reference Access

HoldNew<service>Jobs Hold-New-Jobs [RFC3998] 3.3.1 Admin
Pause<service>Service Pause-Printer [RFC2911] 3.2.7 Admin
Pause<service>ServiceAfterCurrentJob Pause-Printer-After-

Current-Job
[RFC3998] 3.2.1 Admin

Promote<service>Job Promote-Job
Schedule-Job-After

[RFC3998]
[RFC3998]

4.4.1 Admin

Release<service>Job Release-Job [RFC2911] 3.3.6 User
ReleaseNew<service>Jobs Release-Held-New-Jobs [RFC3998] 3.3.2 Admin
Restart<service>Service Restart-Printer [RFC3998] 3.5.1 Admin
Resubmit<service>Job Resubmit-Job [JPS2] 5.4 User
Resume<service>Job Resume-Job [RFC3998] 4.3.2 User
Resume<service>Service Resume-Printer [RFC2911] 3.2.8 Admin
Send<service>Document Send-Document [RFC2911] 3.3.1 User
Send<service>URI Send-URI [RFC2911] 3.3.2 User
Set<service>DocumentElements Set-Document-Attributes [PWG5100.5] 4.4 User
Set<service>JobElements Set-Job-Attributes [RFC3380] 4.2 User
Set<service>ServiceElements Set-Printer-Attributes [RFC3380] 4.1 Admin
Shutdown<service>Service Shutdown-Printer [RFC3998] 3.5.2 Admin
Startup<service>Service Startup-Printer [RFC3998] 3.5.3 Admin
SuspendCurrent<service>Job Suspend-Current-Job [RFC3998] 4.3.1 User

The MFD operation definitions in this section are generic. Depending on the encoding used by the
binding, the actual identification of the operation may be different. For example, IPP uses a numeric code.
Further, depending on the addressing inherent in the transport, the operation requests might include an
implicit rather than explicit identification of the Service. For example, IPP operations coming on the TCP
port 631 are inherently Print Service operations.

The MFD Operation definitions are divided between basic or User (Job-oriented) operations and
administrative operations. The basic MFD operations are listed in Table 49. These operations are
concerned primarily with creating, monitoring, modifying and canceling Jobs and Job-related elements.
Basic operations are available to Users including Administrators and Operators, although any operation
affecting a Job or Document is restricted to the Job Owner or to an Administrator or Operator.
Identification and authentication of the User as Job Owner depends upon the Service and binding, as well
as the specific implementation. For example, the Copy Service may consider whoever is present at the
machine to be the Job Owner.

Administrative Operations, accessible only to Administrators (and Operators), are concerned primarily
with managing the Service and are listed in Table 52. Note that for some Services where the User is
present at the device (such as Copy), certain operations may consider any User that is present at the
implementing device as having Administrator access.

Table 2 – Basic MFD Interface Requests and Responses

Operation Request
Parameters (Notes 1, 2, 3)

Response
Parameters (Notes 1 and 4)

Note

Add<service>HardcopyDocument InputSource, JobId, DocumentTicket,
LastDocument

DocumentNumber,
UnsupportedAttributes

Cancel<service>Document Target Document
Cancel<service>Job JobId
CancelCurrent<service>Job JobId (optional)
CancelMy<service>Jobs JobIds (optional)

Message (optional)

Operation Request
Parameters (Notes 1, 2, 3)

Response
Parameters (Notes 1 and 4)

Note

Create<service>Job JobTicket (optional) Job ID
GetActive<service>Jobs Limit JobSummaries including JobID,

JobName, JobOriginatingUserName,
JobState and perhaps JobStateReasons

Get<service>DocumentElements JobId, Document Number,
RequestedElements (JobReceipt, JobStatus,
or JobTicket)

ElementData, Unsupported Elements,
Job Summary

Get<service>Documents JobId, RequestedElements (JobReceipt,
JobStatus, or JobTicket)

DocumentNumber(s)

Get<service>JobElements JobId, RequestedElements (JobReceipt,
JobStatus, or JobTicket.)

ElementData

Get<service>JobHistory Limit JobSummaries including JobID,
JobName, JobOriginatingUserName,
JobState and perhaps JobStateReasons

Get<service>ServiceElements RequestedElements (ServiceCapabilities,
ServiceConfiguration, ServiceDescription,
ServiceStatus or DefaultJobTicket.)

ElementData

Hold<service>Job JobId
Release<service>Job JobId
Resubmit<service>Job JobId, JobTicket (optional) JobId
Resume<service>Job JobId
Send<service>Document JobId, DocumentData DocumentNumber
Send<service>Uri JobId, Document URI DocumentNumber
Set<service>DocumentElements JobId, DocumentNumber,

RequestedElements & Values

Set<service>JobElements JobId, RequestedElements & Values
SuspendCurrent<service>Job JobId

Notes:
Note 1: All operation requests for a response that includes a message must include an ElementsNatuiralLanguageRequested element. All
operation requests and responses that include messages must include an ElementsNaturalLanguage element.
Note 2: Table indicates minimum arguments. Client may include additional information. MFD may use this information or not, but must not
reject the request if additional information is included.
Note 3: Any request that affects a job or requests information about a specific job must include the RequestingUserName, which is used by the
Service to determine whether the requestor is an Administrator, Operator or the Job Owner and is therefore authorized to make the request.
Some implementations may require further authentication of the requestor’s identity. If the requestor is not determined to have access, the
Service MUST reject the request.
Note 4: All responses must include correlation to request and whether request was successful or failed. Table indicates minimum response in
addition to success if request was successful. Service may include additional information (such as reason for failure) that the client may use or
not, but the client must accept the response whether or not additional information is included.

1.1.1 Basic Service Operations

The common Basic operations are listed in Table 49; they are concerned with creating and controlling
Jobs and Documents within Jobs. The Operations include those by which a client gets Service elements
to allow selection of Services and formulation of Job Tickets. Some of these operations do affect the state
of a Job. ese operations directly affects the state or configuration of the Service except to the extent that
creating or canceling a Job may initiate a sequence that affects the Service.

Any Job-oriented basic operation MUST be rejected by a Service if the operation requestor is not the Job
owner or an Administrator or Operator; that is,

1.1.1.1 Add<service>HardcopyDocument

The Add<service>HardcopyDocument operation allows a client to prepare a Service to accept a
Hardcopy Document via a scanner subunit and to add it to an identified Job. It is analogous to the
Send<service>Document and Send<service>Uri operations except that it is applicable to Services for
which input Documents are obtained by a scan of a region of a media sheet side, such as FaxOut and
EmailOut.

The Service MUST reject this request and send an appropriate message if:

1. The requestor is not the owner of the identified Job, or is not an Administrator or Operator;
2. The Service has already closed inputs to the identified Job, or the Job is not found.

Otherwise, provided the request is properly constructed, complete and references valid objects, the
Service MUST accept the request, MUST close the Job if the LastDocument element is asserted, MUST
be prepared to add DocumentData from the identified input to the identified Job, and MUST respond to
the request.

1.1.1.2 Cancel<service>Document

The Cancel<service>Document operation allows a client to cancel a specified Document in a specified Job
of the specificed Service any time from when the time the Document is created up to, but not including,
the time that the Document is Completed, Cancelled , or Aborted. Because a Document might already be
in Processing by the time a Cancel<service>Document request is received, some portion of the
Document processing might be completed before the it is actually terminated.

The Cancel<service>Document operation does not remove the Document from the Job or the Service, but
does set the specified Document’s DocumentState DocumentStatus element to Cancelled and the
Document’s DocumentStateReasons element to an appropriate value. If the Job containing the Document
is again submitted using Resubmit<service>Job, the canceled Document is also submitted for
processing. Thus Cancel<service>Document has the same semantics as Cancel<service>Job which
cancels only the processing of the Job but does not delete the Job object itself.

The Cancel<service>Document operation does not affect the states of any of the other Documents in the
Job. If the Job is in the Processing state and there are more Documents to be processed, the Service
does continue to process the un-canceled Documents. If there are no further Documents to process, the
Job is advanced to the Completed state.

The Service MUST reject the operation and return an appropriate response message if the operation
requestor is not either the Job owner or a Service or System operator or administrator. Otherwise.the
Service MUST accept or reject the Cancel<service>Document request based on the document's current
state and, if the request is accepted, the Service MUST transition the Document to the indicated new
state as follows:

Table 3 - DocumentState Change by Cancel<service>Document

Initial DocumentState New DocumentState Service response

Pending Cancelled success

Processing Cancelled success

Processing Processing (if there is a significant delay in
transitioning to Cancelled. Also, the
DocumentState value must be set to indicate that

success

the Document is transitioning to Cancelled).

Processing, but with DocumentState
value indicating Document is
transitioning to Cancelled .

(Operation has no effect on DocumentState ,
which may be Processing or Cancelled depending
on progress of previously initiated transition)

client error

Completed Completed client error

 Cancelled Cancelled client error

Aborted Aborted client error

Once a “success” response has been sent, the implementation guarantees that the Document will
eventually end up in the Cancelled state. Between the time that the Cancel<service>Document request is
accepted and when the Document enters the Cancelled Document-state, the DocumentStateReasons
element MUST contain a value which indicates to any later query that, although the Document might still
be Processing, it will eventually end up in the Cancelled state.

1.1.1.3 Cancel<service>Job

The Cancel<service>Job operation changes the state of the identified Job to Cancelled, provided that the
Job is not already in or in a mode leading directly to a termination state. (i.e., Completed, Cancelled , or
Aborted.) See Table 51. Because a Job might already be active by the time a Cancel<service>Job is
received, a portion of the Job may be done before the Job is actually terminated.

The Service MUST accept or reject the request based on the Job's current state. If the request is
accepted, the Job state is transitioned to Cancelled and the Service will issue a success response. See
transition diagram under Job State. If the implementation requires some measurable time to cancel a Job
in the Processing or ProcessingStopped states, the Service MUST set the Job's JobStateReasons to a
value indicating that the Job is transitioning to a Cancelled state. If the Job already has a
JobStateReasons indicating that it is transitioning to a Cancelled state, then the Service MUST reject a
Cancel<service>Job operation.

Table 4 –Legal Transitions Effected by Cancel<service>Job Operation

Current
JobState

Condition New
JobState

Request
Response

Note

Pending - Cancelled Success
PendingHeld - Cancelled Success
Processing Cancelled Success

Implementation takes time to
effect cancel.

Processing Success JobStateReasons will be set to
ProcessingToStopPoint value

JobStateReasons is set to
ProcessingToStopPoint

Processing Failure Job already progressing to canceled state

Processing
Stopped

 Cancelled Success

Implementation takes time to
effect cancel.

Processing
Stopped

 Success JobStateReasons will be set to
ProcessingToStopPoint value

JobStateReasons is set to
ProcessingToStopPoint

Processing
Stopped

Failure Job already progressing to canceled state

Completed Completed Failure Job already terminiated
 Cancelled Cancelled Failure Job already terminiated
Aborted Aborted Failure Job already terminiated

1.1.1.4 CancelCurrent<service>Job

The CancelCurrent<service>Job operation allows a client to cause the Service to terminate processing on
the currently processing Job and to move that Job to the Cancelled state. As with any other Basic
operation directly affecting a Job, this operation is accepted by the Service only if the originator is the
Owner of the affected Job(s) or is an Administrator or Operator; that is, the operator requestor has access
rights.

There is the potential that the current Job may have changed between the time a client requests this
operation and the time the Service implements it. Therefore, if the intent is to suspend a particular Job.
the Client MAY include an optional JobID parameter in the request.

1. If the JobID is included in the request and that Job is currently in the Processing or
ProcessingStopped state and the operation requestor has access rights to that Job, the
Service MUST accept the request and cancel the Job.

2. If no JobId is included in the request and the operation requestor has access rights to the Job
currently in the Processing or ProcessingStopped state, the Service MUST accept the
request and cancel that Job.

3. If more than one Job is in the Processing or ProcessingStopped state, all currently
processing Jobs to which the request originator has access MUST be cancelled unless the
operation included the optional JobID, in which case only the identified Job is canceled.

4. If the JobID is included in the request and that Job is not currently in the Processing or
ProcessingStopped state; or if the requestor does not have access rights to the identified
Job, the Service MUST reject the request and return the appropriate error code.

5. If there is no Job currently in the Processing or ProcessingStopped state or if the requestor
doses not have access rights to any Job that is in the Processing or ProcessingStopped
state, the Service MUST reject the request and return the appropriate error code.

1.1.1.5 CancelMy<service>Jobs

The CancelMy<service>Jobs operation permits a user to cancel all of their own identified non-Terminated
Jobs or, if no specific Jobs are identified in the request, to cancel all of their own non-Terminated Jobs in
the Service. This operation works like the Cancel-Job operation except that it can work on multiple Jobs
at once. If the Service cannot cancel all of the requested Jobs successfully, it MUST NOT cancel any
Jobs and MUST return an error code along with a list of offending JobIds.

The client specifies the set of candidate Jobs to be canceled by supplying and/or omitting the JobIds. The
Service MUST check the access rights of the requesting user against all of the candidate Jobs. If any of
the candidate Jobs are not owned by the requesting user, the Service MUST NOT cancel any Jobs and
MUST return the appropriate error status code along with the list of un-cancelable JobId values. If this
check succeeds, then (and only then) the Service MUST accept or reject the request based on the
current state of each of the candidate Jobs and transition each Job to the indicated new state as shown in
Table 51. If any of the candidate Jobs cannot be canceled, the Service MUST NOT cancel any Jobs and
MUST return the indicated error staus code along with the list of offending JobId values.

1.1.1.6 Close<service>Job Operation

The Close-Job operation allows a client to close Job inputs to those Services accepting Documents, even
when the last Document input operation for the Job (Send<service>Document, Send<service>URI or
Add<service>Document) did not include the LastDocument element with a 'true' value. This
Close<service>Job operation supersedes and, if supported by the Service, is preferable to the practice of
using a Send<service>Document with no document data but with a LastDocument element containing a
'true' value to close inputs.

The Service MUST reject this operation request if the target Job is not found or if the requestor is not the
Job Owner or an Administrator. Otherwise, the Service MUST accept this operation request even if the
target Job is already closed and regardless of JobState. Closing the Job MUST cause the Service to
reject any subsequent Document input operation for the target Job, but MUST NOT affect the execution
of any previously accepted Document input operation.

1.1.1.7 Create<service>Job

The Create<service>Job operation allows a Client to request creation of a Job in the Service. Upon
creation, the Job is in Pending state and available for scheduling unless a Job Processing instruction
prevents this. (e.g. JobHoldUntil puts it in PendingHeld state) The Create<service>Job operation MUST
fail if the Service’s IsAcceptingJobs element value is ‘false’.

Job Processing is done on one or more Documents. Unlike the antecedent IPP Print-Job operation, the
MFD Create<service>Job may involve more than one Document. Depending upon the type of Service,
the input may be a HardcopyDocument or a DigitalDocument. In either case, the source(s) of the input
document(s) as well as the destination(s) of the output document(s) are identified in the JobTicket
submitted in the Create<service>Job Request,

Once a Job is created, Documents may be input as part of that Job by Send<service>Document,
Send<service>URI or, for Services that accept hardcopy input, Add<Service>Document operations. In
Service implementations that do not accept multiple documents (i.e., MultipleDocumentJobsSupported =
False), document input is closed after one Document is accepted. In Service implementations that do
accept multiple documents (i.e., MultipleDocumentJobsSupported = True), there may be multiple
Send<service>Document, Send<service>URI or Add<Service>Document operations. There are two
methods of indicating when all Documents have been input:

issuing a Close<service>Document request
issuing a Send<service>Document, Send<service>URI or Add<Service>Document request with the
LastDocument element = True

To avoid a possible hang condition, Service implementations supporting multiple Document Jobs must
also support the MultipleOperationTimeOut element that indicates the minimum number of seconds the
Service will wait for the next Send or Add operation before taking some recovery action. If, for some
reason, there is a longer period between Create<service>Job and valid Send or Add operations, or
between sequential Send or Add operations, the Client MUST send Send or Add requests, even if they
are empty, to reset the timeout. If there is a multiple operation timeout, the Service will take remedial
action according to the value that Service has indicated in its MultipleOperationTimoutAction element.

1.1.1.8 Get<Service>DocumentElements

The Get<Service>DocumentElements operation allows a Client to obtain detailed information about the
specified Document within the specified Job. This operation is parallel to the Get<service>Job-Elements
operation, but with the target and response elements relating to a Document rather than a Job.

The Client requests specific groups of elements (complex elements) contained within the Document. The
Document Data is not part of the Document and cannot be retrieved using this operation. However the
location of the Document Data is available. The allowed values for RequestedElements are
DocumentReceipt, DocumentStatus or DocumentTicket. Vendors may extend the allowed values.

The Service MUST return the DocumentDescription element values that a client supplied in the
Document Creation operation (Create<service>Job, Send<service>Document or Send<service>URI) or
provided in Set<service>DocumentElements operation a plus any additional Document Description
elements that the Service has generated, such as DocumentState. The Service MUST NOT return any

Job level elements that the Document object inherits and MUST NOT factor out common Document
object elements and return them as Job object elements.

It is NOT REQUIRED that a specific Document include all elements belonging to a group (since some
elements are optional). However, it is REQUIRED that the Service support all these group names for the
Document object.

1.1.1.9 Get<service>Documents

The Get<service>Documents operation allows a client to retrieve the list of Documents belonging to the
target Job. The client MAY also supply a list of the requested Document element names and/or element
group names. A group of Document element names with their values will be returned for each Document
in the Job.

This operation is similar to the Get<service>DocumentElements operation except that it returns elements
from all Documents contained in the Job rather than just the specified Document. As with the
Get<service>DocumentElements operation, the Service MUST return only those elements that are in the
DocumentTicket

1.1.1.10 Get<service>JobElements

The Get<Service>JobElements operation allows a Client to obtain detailed information on the specified
Job. Unlike the antecedent IPP Get-Job-Attributes operation, the Get<Service>JobElements request may
not specify individual elements. Rather, the Client requests specific groups of elements contained within
the Job. The allowed values for RequestedElements are JobReceipt, JobStatus, or JobTicket. Vendors
may extend the allowed values.

The Service MUST reject this request if the requestor is not authorized access to the identified Job,

1.1.1.11 Get<service>JobHistory

The Get<service>JobHistory operation provides summary information on all Jobs that have reached a
terminating state (i.e. Completed, Cancelled , Aborted). As such, it is similar to the antecedent Get-Jobs
operation with the which-jobs element set to ‘completed’. Unlike Get-Jobs, Get<service>JobHistory may
not include a RequestedElements argument; rather, it always returns a JobSummary for each terminated
Job including JobID, JobName, JobOriginatingUserName, JobState and perhaps JobStateReasons and
other service specific information.

1.1.1.12 Get<service>ServiceElements

The Get<service>ServiceElements operation allows a Client to obtain detailed information on the
elements and their values supported by the Service. Unlike the antecedent IPP Get-Printer-Attributes
operation, the Get<Service>ServiceElements request may not specify individual elements. Rather, the
Client requests information on one or more specific group of elements. The allowed values for Requested
Elements are ServiceCapabilities, ServiceConfiguration, ServiceDescription, ServiceStatus or
DefaultJobTicket. Vendors may extend the allowed values.

Some Services may accept an additional argument in a Get<service>ServiceElements request to further
filter the response, much as the antecedent IPP Get-Printer-Attributes operation accepted the Document-
Format element. The individual Service documents identify such arguments if any, their effect and
whether support is mandatory.

In addition to the status message, the Service response includes the set of requested element names and
their values for all supported elements. The response NEED NOT contain the requested element names
for any elements not supported by the Service.

1.1.1.13 GetActive<service>Jobs

The GetActive<service>Jobs operation provides summary information on all Jobs in the Pending or
Processing state. As such, it is equivalent to the antecedent Get-Jobs operation with the which-jobs
element set to ‘not-completed’. Unlike the antecedent Get-Jobs operation, GetActive<service>Jobs may
not include a RequestedElements argument; rather, it always returns a JobSummary for each Active Job
with the summary including JobID, JobName, JobOriginatingUserName, JobState and perhaps
JobStateReasons and other service specific information.

1.1.1.14 Hold<service>Job

The Hold<service>Job operation allows a client to hold a Pending Job in the queue so that it is not
eligible for scheduling. The Job Transitions as a result of a HoldJob operation depend upon the current
Job state, as indicated in Table 53.

The restraint imposed by a Hold<service>Job is removed by a Release<service>Job operation directed to
the same Job. If a Service implementation supports Hold<service>Job, it must also support
Release<service>Job and vice-versa.

Table 5 -Transitions Resulting from HoldJob Operation

Current JobState New JobState Status Note
Pending PendingHeld Success See Note 1
Pending Pending Success See Note 2
PendingHeld PendingHeld Success See Note 1
PendingHeld Pending Success See Note 2
Processing Processing Failure
ProcessingStopped ProcessingStopped Failure
Completed Completed Failure
 Cancelled Cancelled Failure
Aborted Aborted Failure

Note 1: If the implementation supports multiple reasons for a Job to be in the PendingHeld state, the Server MUST add the
JobHoldUntilSpecified value to the Job's JobStateReasons element.
Note 2: If the Service supports the JobHoldUntil and/or the JobHoldUntilTime elements, but the specified time period has already started (or is
the NoHold value) and there are no other reasons to hold the Job, the Service MUST make the Job be a candidate for processing immediately
by putting the Job in the Pending state.
If the HoldJob operation is supported, then the ReleaseJob operation MUST be supported, and vice-versa. The OPTIONAL JobHoldUntil or
JobHoldUntilTime parameter allows a client to specify whether to hold the Job until a specified time, indefinitely or until a specified time period.
The Service MUST accept or reject the request based on the Job's current state and transition the Job to the indicated new state as follows. A
HoldJob request is rejected when the identified Job is in the Processing or ProcessingStopped states.

1.1.1.15 Release<service>Job

The Release<service>Job operation allows a client to release a previously held Job from the
PendingHeld state so that it is eligible for scheduling, provided that there is no other reason to keep the
Job in the PendingHeld state. That is, the restraint imposed by a Hold<service>Job operation is removed
by a Release<service>Job operation directed to the same Job. If a Service implementation supports
Hold<service>Job, it must also support Release<service>Job and vice-versa.

The Job Transitions as a result of a HoldJob operation depend upon the current Job state, as indicated in
Table 53.

Table 6 - Job State Transitions Resulting from ReleaseJob Operation

Current Job State New Job State Status Comment

Pending

Pending success

Pending-Held Pending-Held success See note below
Pending-Held Pending success
Processing Processing success
Processing- Stopped Processing- Stopped success
Completed Completed Failure
 Cancelled Cancelled Failure
Aborted Aborted Failure

Note: If there are other reasons to keep the Job in the PendingHeld state, such as resources nor available, the Job remains in the PendingHeld
state. Thus the PendingHeld state is not just for Jobs that have the Job Hold applied to them, but are for any reason that keeps the Job from
being a candidate for scheduling and processing.

1.1.1.16 Resubmit<service>Job

The Resubmit<service>Job operation allows a client to resubmit a previously completed Job but with the
option of providing new JobTicket information (other than input DocumentData or input DocumentData
descriptive information.)

The Resubmit<service>Job operation is applicable only to a retained Job. A retained Job is one which
remains in the Service after it has been completed or cancelled. This may be incidentally or because it is
a saved Job, which is a Completed or Cancelled Job with a JobSaveDispostion element value that
indicates that the Job, including DocumentData if any, should not be deleted or aged-out after the Job is
completed.

If a Resubmit<service>Job operation is accepted, the state of the retained Job is not changed; rather, a
new Job is created from the identified retained Job and submitted with an implicit CreateJob request.

1. If the Resubmit<service>Job request contains a processing element that was in the retained Job
but with a different value, the value supplied in the Resubmit<service>Job operation MUST
override the original value (if supported by the Service).

2. If the Resubmit<service>Job request contains a processing element that was not in the retained
Job, the element with the value supplied with the Resubmit<service>Job operation MUST be
applied (if supported by the Service)

3. For any processing element in the original retained Job the value of which is not changed in the
Resubmit<service>Job request, that element and its value MUST be applied to newly created Job
except that a JobSaveDispostion element value indicating that the Job should be saved, and
certain other Service-specific element values, MUSR NOT be copied but are applied to the new
Job only if they are in the Resubmit<service>Job request.

The newly created Job is moved to the Pending or PendingHeld Job state with the same element values
as the original saved Job (except for the save element). If any of the documents in the saved Job were
passed by reference (Send<service>URI or Send>service>URI), the Service MUST re-fetch the data,
since the semantics of Restart<service>Job are to repeat all Job processing. The Service MUST assign
new JobUri and JobId values to the newly created Job; the JobDescription elements that accumulate Job
progress, such as JobImpressionsCompleted, JobMediaSheetsCompleted, and JobKOctetsProcessed,
MUST be an accurate record for the newly created Job.

The Service MUST accept or reject the Resubmit<service>Job Request based on the authority of the
requester and the referenced Job's current state. The Requester must either be the Job owner or an
operator or administrator of the Service. The target Job must be retained with a Completed or Cancelled
state.

1.1.1.17 Resume<service>Job

The Resume<service>Job operation allows a client to resume the identified Job at the point where it was
suspended. Provided that no other condition exists that forces the Job to the PendingStopped state, the
Service moves the Job from the ProcessingStopped state to the Pending state and removes the
JobSuspended value from the Job's StateReasons element. If the identified Job is not in the
ProcessingStopped state with the JobSuspended value in the Job's StateReasons element, the Service
MUST reject the request and return an appropriate status code, since the Job was not suspended.

If a Service supports Suspend<service>Job or SuspendCurrent<service>Job operations, it MUST support
the Resume<service>Job operation, and vice-versa.

1.1.1.18 Send<service>Document

The Send<service>Document operation allows a client to input a DigitalDocument to a Service as part of
an already created Job. In response to the Create<service>Job, the Service returns the JobURI and the
JobId. For each Document that the client desires to add, the client issues a Send<service>Document
request which contains the entire stream of document data for one Document.

If the Service supports this operation but does not support multiple documents per Job, Document input is
closed after the first document is accepted and the Service MUST reject subsequent
Send<service>Document requests associated with the same Job. Similarly, if the Service does support
multiple documents per Job, the Service MUST reject Send<service>Document requests associated with
a given Job after inputs to that Job have been closed either a Close<service>Job operation or a previous
Send<service>Document with a 'true' value for the LastDocument element. Note that the Client may send
and the Service must accept a Send<service>Document request with a 'true' value for the LastDocument
element to close input to that Job, even if that request includes no Document data.

See the Create<system>Job description for discussion of issues relating to excessive delay between
multiple Send<service>Document requests.

The Service MUST reject this request and send an appropriate message if:

1. The requestor is not the owner of the identified Job, or is not an Administrator or operator
2. The Service has already closed inputs to the identified Job, or the Job is not found.

Otherwise, the Service MUST accept the request, MUST close the Job if the LastDocument element is
asserted, MUST add the DocumentData (if any) to the identified Job, and MUST respond to the request

1.1.1.19 Send<service>Uri

The Send<service>URI operation allows a client to input a DigitalDocument to a Service as part of an
already created Job. As such, the Send<service>URI operation is identical to the
Send<service>Document except that a client supplies a URI reference (DocumentUri element) rather
than the document data itself. If a Service supports this operation, clients can use both
Send<service>URI and Send<service>Document operations to add new documents to an existing multi-
document Job.

As with Send<service>Document, if the Service supports Send<service>URI but does not support
multiple documents per Job, the Service MUST reject subsequent Send<service>URI requests
associated with the same Job. Similarly, if the Service does support multiple documents per Job, the
Service MUST reject Send<service>URI requests associated with a given Job after inputs to that Job
have been closed. Job inputs can be closed either by a Close<service>Job operation or a
Send<service>Document (NOT a Send<service>URI) request with a 'true' value for the LastDocument
element. Note that the Client may send and the Service must accept a Send<service>Document request

with a 'true' value for the LastDocument element to close input to that Job even if that request includes no
Document data.

The Service MUST reject this request and send an appropriate message if:

1. The requestor is not the owner of the identified Job, or is not an Administrator or operator
2. The Service has already closed inputs to the identified Job, or the Job is not found.
3. The Service is unable to access the referenced URI

Otherwise, the Service MUST accept the request, MUST close the Job if the LastDocument element is
asserted, MUST add the DocumentData (if any) to the identified Job, and MUST respond to the request

See the Create<system>Job description for discussion of issues relating to excessive delay between
multiple Send<service>URI requests.

1.1.1.20 Set<service>DocumentElements

The Set<service>DocumentElements operation allows a Client to set the values of identified elements of
the specified Document within the specified Job. This operation is parallel to the
Set<service>JobElements and Set<service>ServiceElements operations and it follows the same rules for
validation, but with the target and response elements relating to a Document rather than a Job or the
Service.

The Client must fully identify the elements to be set as well as the set values. The only settable elements
are those within the DocumentTicket. The Document Data is not part of the Document and cannot be
changed using this operation. If a Document was originally submitted without a given settable element
that the Set<service>DocumentElements request attempts to set, the Service adds the specified element
to the Document.

If the client identifies a Document element with the out-of-band DeleteElement value, then the Service
MUST remove the element and all of its values from the Document. The semantic effect of the client
supplying the DeleteElement value in a Set<service>DocumentElements operation MUST be the same
as if the element had not originally been supplied with the Document. Any subsequent
Get<service>DocumentElements or Get<service>Documents request MUST NOT return any element that
has been deleted. However, a client can re-establish such a deleted Document element with any
supported value(s) using a subsequent Set<service>DocumentElements operation.

If the client supplies an element in a Set<service>DocumentElements request with the DeleteElement
value and that element is not present on the Document object, the Service ignores that supplied element
in the request, does not return the element in the Unsupported Elements group, and returns the ‘success’
status code, provided that there are no other problems with the request.

The validation of the Set<service>DocumentElements request is performed by the Service as if the
Document had been submitted originally with the new element values (and the deleted elements
removed); i.e., all modified Document elements and values must be supported in combination with the
Document elements not modified. If such a Document Creation operation would have been accepted,
then the Set<service>DocumentElements MUST be accepted. If such a Document Creation operation
would have been rejected, then the Set<service>DocumentElements MUST be rejected and the
Document MUST be unchanged. In addition, if any of the supplied elements are not supported, are not
settable, or the values are not supported, the Service MUST reject the entire operation; the Service
MUST NOT partially set some of the supplied elements. In other words, after the operation, all the
supplied elements MUST be set or none of them MUST be set, thus making the
Set<service>DocumentElements an atomic operation.

The value of JobMandatoryElements supplied in the original Create<service>Job request, if any, MUST
have no effect on the behavior of the Set<service>DocumentElements operation. Rather, the Service

must consider that any element or element value in a Set<service>DocumentElements operation is
mandatory. The Service MUST reject any request to set a Document element to an unsupported value or
to a value that would conflict with another Document element value.

The Service MUST accept or reject the Set<service>DocumentElements operation when the Document's
DocumentState element has the values shown in Table 6. Although the Document's current state affects
whether the Service accepts or rejects the Set<service>DocumentElements request, the operation MUST
NOT change the state of the Document object (since the Document is a passive object and the Document
state is a subset of the JobState). For example, if the operation creates a request for unavailable
resources, the Job (but not the Document) transitions to a new state.

Table 7 - Actions on Set<service>DocumentElements Depending on Document State

Current DocumentState Service Action Service Response

Pending Element and/or Element values are changed Success
Pending, but resources needed
for changed elements are not
ready

Element and/or Element values are changed. The Job MAY
change state, but the Document MUST NOT change state

Success

Processing Element and/or element values may or may not be changed
depending on implementation, the elements being set and
at what point Document is in Processing

Success or ClientError,
depending upon whether
changes are implemented

Completed Element and/or Element values are not changed ClientError
Canceled
Aborted

1.1.1.21 Set<service>JobElements

The Set<Service>JobElements operation allows a Client to set the values of identified elements of the
specified Job. The Client must fully identify the elements to be set as well as the set values. In the
response, the Service returns success or rejects the entire request with indications of which element or
elements could not be set to the specified values.

This operation is parallel to the Set<service>DocumentElements and Set<service>ServiceElements
operations and it follows the same rules for validation, but with the target and response elements relating
to a Job rather than a Document or the Service

If the client identifies a Job element with the out-of-band DeleteElement value, then the Service MUST
remove the element and all of its values from the Job. The semantic effect of the client supplying the
DeleteElement value in a Set<service>JobElements operation MUST be the same as if the element had
not originally been supplied with the Job. Any subsequent Get<service>JobElements or
Get<service>Jobs request MUST NOT return any element that has been deleted. However, a client can
re-establish such a deleted Job element with any supported value(s) using a subsequent
Set<service>JobElements operation.

If the client supplies an element in a Set<service>JobElements request with the DeleteElement value and
that element is not present on the Job object, the Service ignores that supplied element in the request,
does not return the element in the Unsupported Elements group, and returns the ‘success’ status code,
provided that there are no other problems with the request.

The validation of the Set<service>JobElements request is performed by the Service as if the Job had
been submitted originally with the new element values (and the deleted elements removed); i.e., all
modified Job elements and values must be supported in combination with the Job elements not modified.
If such a Job Creation operation would have been accepted, then the Set<service>JobElements request
MUST be accepted. If such a Creation operation would have been rejected, then the

Set<service>JobElements MUST be rejected and the Job MUST be unchanged. In addition, if any of the
supplied elements are not supported, are not settable, or the values are not supported, the Service MUST
reject the entire operation; the Service MUST NOT partially set some of the supplied elements. In other
words, after the operation, all the supplied elements MUST be set or none of them MUST be set, thus
making the Set<service>JobElements an atomic operation.

The value of JobMandatoryElements supplied in the original Create<service>Job request, if any, MUST
have no effect on the behavior of the Set<service>JobElements operation. Rather, the Service must
consider that any element or element value in a Set<service>JobElements operation is mandatory. The
Service MUST reject any request to set a Job element to an unsupported value or to a value that would
conflict with another Job element value.

The Service MUST accept or reject the Set<service>JobElements operation when the Job's JobState
element has the values shown in Table 6. Although the Job's current state affects whether the Service
accepts or rejects the Set<service>JobElements request, the operation MUST NOT change the state of
the Job object (since the Job is a passive object and the Job state is a subset of the JobState). For
example, if the operation creates a request for unavailable resources, the Job (but not the Job) transitions
to a new state.

1.1.1.22 SuspendCurrent<service>Job

The SuspendCurrent<service>Job operation allows a Client to suspend a Job by setting a condition in a
Job that is currently in the Processing or ProcessingStopped state. This condition, reflected by the
JobSuspended value in that Job’s JobStateReasons element, causes that Job to be in the
ProcessingStopped state. The Service is able to processes other Jobs normally, provided that no other
inhibiting conditions exist. Note that a Job may be ProcessingStopped state for other reasons and that,
once it has been suspended, the Job will remain in the ProcessingStopped state even after the other
conditions have been removed.

There is the potential that the current Job may have changed between the time a client requests this
operation and the time the Service implements it. Therefore, if the intent is to suspend a particular Job.
the Client can include an optional JobID parameter in the request.

The target Job is:

a) The Job identified by the JobId, if included in the request
b) If the JobId is not included in the request, any Jobs in the Processing or

ProcessingStopped state to which the requestor has access rights.

The Service MUST reject the request and send an appropriate message if:

1. There is no target Job in the Processing or ProcessingStopped state to which the requestor has
access rights.

2. The target Job or all potential target Jobs have already been suspended.

The Service MUST accept the request, cancel any target Job(s) that have not been previously
suspended, and return an appropriate message if:

1. The target JobID is included in the request and that Job is currently in the Processing or
ProcessingStopped state (but is not suspended), and the requestor has access rights,

2. If no JobId is included and the requestor has access rights to the Job that is currently in the
Processing or ProcessingStopped state (but is not suspended), the Service MUST accept the
request and suspend that Job.

3. If more than one Job is in the Processing or ProcessingStopped state (but are not suspended), all
such Jobs MUST be suspended unless the operation request included the optional JobID, in
which case only the identified target Job MUST be suspended.

4. If the JobID is included in the request and that Job is not currently in the Processing or
ProcessingStopped state; or if the JobID is not included and there is no Job currently in the
Processing or ProcessingStopped state, the Service MUST reject the request and return the
appropriate error code.

5. If the JobID is included in the request and that Job has been suspended; or if no JobId is included
and is currently in the Processing or ProcessingStopped state, the Service MUST reject the
request and return the appropriate error code.

The Resume<service>Job operation releases a suspended Job. If a Service supports
SuspendCurrent<service>Job operation, it MUST support the Resume<service>Job operation, and vice-
versa.

1.1.2 Administrative Service Operations

Administrative Service operations directly affect the Service as a whole or affect the jobs of multiple
JobOwners. Access is reserved for Administrators or Operators. The MFD Administrative Service
Operations are listed in Table 52 and are described below.

Table 8 - Administrative Operations

Operation Request
Parameters (Notes 1, 2,
3)

Response
Parameters (Notes 2, 3, 4)

Note

Cancel<service>Jobs JobIDs (optional) JobIds of identified but un-cancellable

Jobs

Disable<service>Service
Enable<service>Service -
Hold<service>Job Job ID; JobHoldUntil or

JobHoldUntilTime
(optional)

-

HoldNew<service>Jobs JobHoldUntil or
JobHoldUntilTime
(optional)

Pause<service>Service -
Pause<service>ServiceAfterCurrentJob -
Promote<service>Job Job ID (Target)

Predecessor
JobID(optional)

Release<service>Job Job ID
ReleaseNew<service>Jobs
Restart<service>Service
Resume<service>Job JobID
Resume<service>Service
Set<service>ServiceElements Target elements,
Shutdown<service>Service 5
Startup<service>Service

Notes:
Note 1:Table indicates minimum arguments. Client may include additional information. MFD may use this information or not, but must not reject
the request if additional information is included.
Note 2: All requests must include the RequestingUserName, which is used by the Service to determine whether the requestor is an
Administrator or Operator and is therefore authorized to make the request. Some implementations may require further authentication of the
requestor’s identity. If the requestor is not determined to have access, the Service MUST reject the request.

Note 3: All operation requests for a response that includes a message must include an ElementsNatuiralLanguageRequested element. All
operation requests and responses that include messages must include an ElementsNaturalLanguage element.
Note 4: All responses must include correlation to request and whether request was successful or failed. Table indicates minimum response in
addition to success if request was successful. MFD may include additional information (such as reason for failure) that the client may use or
not. But the client must accept the response whether or not additional information is included.
Note 5: Forcing the Service state may also force the state of any active Jobs to Aborted.

1.1.2.1 Cancel<service>Jobs

The Cancel<service>Jobs operation allows the Operator or Administrator of the Service to cancel all
identified non-Terminated Jobs or, if no specific Jobs are identified in the request, to cancel all non-
Terminated Jobs in the Service. It differs from the Cancel<service>Job operation in that it works on a
number of Jobs at once. If, following the Legal Job state Transitions in Table, the Service cannot cancel
all explicitly or implicitly requested Jobs successfully, it MUST NOT cancel any Jobs but MUST return an
error code along with the list of JobIds for those Jobs that could not be cancelled.

The set of candidate Jobs to be canceled is specified by the supplied JobIds. If no JobIds are supplied, it
is implicit that all Jobs that are not in a Terminating state are to be canceled. As with all Administrative
operations, the Service MUST check the access rights of the requesting user. Provided that the requester
has access rights, the Service MUST check the current state of each of the candidate Jobs. If any of the
candidate Jobs cannot be canceled, the Service MUST NOT cancel any Jobs and MUST return the
indicated error status code along with the list of offending JobId values. If there are no Jobs that cannot
be cancelled, the Service MUST transition each identified Job to the indicated new state as shown in
Table 51.

Table x –Legal Transitions Effected by Cancel<service>Jobs Operation

Current
JobState

Condition New
JobState

Request
Response

Note

Pending - Cancelled Success
PendingHeld - Cancelled Success
Processing Cancelled Success

Implementation takes time to
effect cancel.

Processing Success JobStateReasons will be set to
ProcessingToStopPoint value

JobStateReasons is set to
ProcessingToStopPoint

Processing Failure Job already progressing to canceled state

Processing
Stopped

 Cancelled Success

Implementation takes time to
effect cancel.

Processing
Stopped

 Success JobStateReasons will be set to
ProcessingToStopPoint value

JobStateReasons is set to
ProcessingToStopPoint

Processing
Stopped

Failure Job already progressing to canceled state

Completed Completed Failure Job already terminiated
 Cancelled Cancelled Failure Job already terminiated
Aborted Aborted Failure Job already terminiated

1.1.2.2 Disable<service>Service

The Disable<service>Service operation prevents the Service from creating any new Jobs by negating the
IsAcceptingJobs element. This operation has no effect upon the Service State and the Service is still able
to process operations other than Create<service>Job. All previously created or submitted Jobs and all
Jobs currently processing continue unaffected.

If the requestor is determined to have proper access, the Service MUST accept this request and MUST
negate the IsAcceptingJobs element.

The IsAcceptingJobs element value is reaffirmed by the Enable<service>Service operation. If an
implementation supports Disable<service>Service it must also support Enable<service>Service and vice-
versa.

1.1.2.3 Enable<service>Service

The Enable<service>Service operation asserts the IsAcceptingJobs element to allow the Service to
accept new Create<service>Job requests. The operation has no effect upon the Service State or any
other operation requests the Service may receive.

If the requestor is determined to have proper access, the Service MUST accept this request and MUST
assert the IsAcceptingJobs element. The Service MUST then be able to accept and implement
Create<Service>Job requests, provided that no other inhibiting condition exists.

If a Service implementation supports Disable<service>Service it must also support
Enable<service>Service and vice-versa.

1.1.2.4 Hold<service>Job

The Hold<service>Job operation allows a client to hold a Pending Job in the queue so that it is not
eligible for scheduling. The Job Transitions as a result of a HoldJob operation depend upon the current
Job state, as indicated in Table 53.
If the HoldJob operation is supported, then the ReleaseJob operation MUST be supported, and vice-
versa. The OPTIONAL JobHoldUntil or JobHoldUntilTime parameter allows a client to specify whether to
hold the Job until a specified time, indefinitely or until a specified time period. The Service MUST accept
or reject the request based on the Job's current state and transition the Job to the indicated new state as
follows. A HoldJob request is rejected when the identified Job is in the 'Processing' or
'ProcessingStopped' states.

Table 9 -Transitions Resulting from HoldJob Operation

Current JobState New JobState Status Note
Pending PendingHeld Success See Note 1
Pending Pending Success See Note 2
PendingHeld PendingHeld Success See Note 1
PendingHeld Pending Success See Note 2
Processing Processing Failure
ProcessingStopped ProcessingStopped Failure
Completed Completed Failure
 Cancelled Cancelled Failure
Aborted Aborted Failure

Note 1: If the implementation supports multiple reasons for a Job to be in the PendingHeld state, the Server MUST add the 'JobHoldUntil' value
to the Job's JobStateReasons element.
Note 2: If the Service supports the JobHoldUntil and/or the JobHoldUntilTime elements, but the specified time period has already started (or is
the 'NoHold' value) and there are no other reasons to hold the Job, the Service MUST make the Job be a candidate for processing immediately
by putting the Job in the 'Pending' state.

1.1.2.5 HoldNew<service>Jobs

The HoldNew<service>Jobs operation allows a client to prevent any new Jobs from being eligible for
scheduling by forcing all newly-created Jobs to the PendingHeld state with a JobHoldUntil or
JobHoldUntilTime Job Processing element added, depending upon the element supplied with the
HoldNew<service>Jobs operation request. The operation has the same effect as a Hold<service>Jobs
operation except that any Jobs in the Pending or Processing state when the HoldNew<service>Jobs
request is accepted are allowed to go to completion, provided that no other conditions or operations
prevent this.

The JobHoldUntil parameter allows a client to specify holding new Jobs indefinitely or until a specified
named time period. The JobHoldUntilTime parameter allows a client to hold new Jobs until a specified
time. Provided that the requestor is authorized and the operation and requested parameters are
supported, a Service MUST accept a HoldNew<service>Jobs request and MUST add the supplied
'JobHoldUntil' or JobHoldUntilTime element to the Jobs. This HoldNew<service>Job condition may be
cleared by a ReleaseNew<Service>Jobs operation.

If the HoldNewJobs operation is supported, then the ReleaseNew<Service>Jobs operation MUST be
supported, and vice-versa

1.1.2.6 Pause<service>Service

The Pause<service>Service operation allows a client to send the Service to the Stopped state. In this
Service state, the Service MUST NOT advance any Job to Job Processing state. Depending on
implementation, the Pause operation MAY also stop the Service from continuing to process any current
Job, sending the Job to the ProcessingStopped state. That is, depending upon implementation, any Job
that is currently in the Processing state is sent to the ProcessingStopped state as soon as the
implementation permits; or the Job continues to a termination state as determined by other conditions.
The Service MUST still accept CreateJob operations to create new Jobs, provided that there are no other
conditions preventing it.

If the Pause operation is supported, then the Resume operation MUST also be supported, and vice-
versa.

Service State transitions resulting from a Pause operation are identified in Table 54. Pause
implementation should be done as soon as the possible after the request is accepted. If the
implementation will take more than negligible time to stop processing (perhaps to finish processing the
current Job), the Service may remain in the ‘Processing’ state but MUST add the 'MovingToPaused' value
to the Service’s StateReasons element. When the Service transitions to the 'Stopped' state, it removes
the 'MovingToPaused' value and adds the 'Paused' value to the Service’s StateReasons element. If the
implementation permits the current Job to stop in mid processing, the Service transitions directly to the
‘Stopped’ state with the Service’s StateReasons element set to the 'Paused' value and the current Job
transitions to the 'ProcessingStopped' state with the JobStateReasons element set to the 'Stopped' value.

For any Jobs in the 'Pending' or 'PendingHeld' state, the ‘Stopped' value of the Jobs' JobStateReasons
element also applies. However, the Service NEED NOT update those Jobs' JobStateReasons element
and need only return the 'Stopped' value when those Jobs are queried (so-called lazy evaluation).

Provided that the requestor is authorized, the Service MUST accept the Pause<service>Service request
in any Service state and, if so indicated, transition the Service to the indicated new State before
responding as follows:

Table 10 - Transitions Resulting from Pause Operation

Current Service State New Service State StateReason Status Notes
Idle Stopped Paused Success
Processing Processing MovingToPaused Success See Note 1
Processing Stopped Paused Success See Note 2
Stopped Stopped Paused Success

Note 1: Implementations that do not stop processing of the current Job respond as indicated. When the current Job has entered a termination
state and processing is stopped, the Service State goes from ‘Processing’ to ‘Stopped’ and the ‘StateReason value goes from
‘MovingToPaused’ to ‘Paused’.
Note 2: In instances where there is no current Job in the Processing state, and in implementations that are able to pause the current Job, the
Service goes immediately to the ‘Stopped’ state with ‘StateReason ‘Paused’ value. In the latter case, the current Job goes to the
‘ProcessingSTopped state with a JobStateReasons element value of ‘Stopped’.

1.1.2.7 Pause<service>ServiceAfterCurrentJob

The Pause<service>ServiceAfterCurrentJob operation allows a client to stop the Service from processing
any Jobs once any Job currently in Processing is completed . This operation has no effect on the current
Job and the Service MUST complete the processing of the current Job, provided that no other condition
or operations preclude it. The Service MUST still accept CreateJob operations to create new Jobs, but
MUST prevent any Jobs from entering the 'Processing' state. If the
Pause<service>ServiceAfterCurrentJob operation is supported, then the Resume<service>Service
operation MUST also be supported.

Service State transitions resulting from a Pause<service>ServiceAfterCurrentJob operation are identified
in Table 55. Note that the response to the Pause<service>ServiceAfterCurrentJob request and the
Pause<service>Service request are exactly the same in implementations where the Service
implementation is not able to pause a Job currently in the Processing state.

If the implementation will take more than negligible time to finish processing the current Job, the Service
will remain in the Processing state and must add the 'MovingToPaused' value to the Service’s
StateReasons element. When the Service transitions to the 'Stopped' state, it removes the
'MovingToPaused' value and adds the 'Paused' value to the Service’s StateReasons element.

For any Jobs in the 'Pending' or 'PendingHeld' state, their state is unchanged but the JobStateReasons
element must be set to the ‘Stopped' value. However, the Service NEED NOT update those Jobs'
JobStateReasons element and only need return the 'Stopped' value when those Jobs are queried (so-
called lazy evaluation).

Provided that the requestor is authorized, the Service MUST accept the request in any Service state and
MUST transition the Service to the indicated new State as follows before returning the operation
response.

Table 11 –System States Changes in Response to Pause<system>SystemAfterCurrentJob
Operation

Current Service State New Service State StateReason Status
Idle Stopped Paused Success
Processing Processing MovingToPaused Success See Note
Stopped Stopped Paused Success

Note : Once the currently processing Job completes, the Service state will transition to ‘Stopped’ and the MovingToPaused StateReason will
be remove and replaced with ‘Paused’

1.1.2.8 Promote<service>Job

The Promote<service>Job operation schedules the identified Job to be processed next, after the currently
processing Job or, if the request includes the predecessor JobID, immediately after the identified
predecessor Job. The Promote<service>Job operation is a combination of the IPP Promote-Job and
Schedule-Job-After operations. If the predecessor Job is not specified, it acts in the same way as the
antecedent IPP Promote-Job operation. If the predecessor Job is specified, it acts the same way as the
antecedent IPP Schedule-Job-After operation.

The identified target Job must be in the 'Pending' state. If the identified target Job is not in the 'Pending'
state or if the predecessor Job is identified and it is not in the ‘Pending’, ‘Processing’ or
‘ProcessingStopped’ state, the Service MUST reject the request and return an appropriate status code. If

the Promote<service>Job request is accepted, the target Job MUST be processed immediately after the
current or identified predecessor Job reaches a Termination state (Cancelled, Completed or Aborted)

Note that the action of this operation is consistent even if a previous Promote<service>Job Request has
caused some other Job to be scheduled after the current or predecessor Job; that is, within the
rescheduling time limitations of the Service, the Job identified in the last Promote<service>Job Request
accepted will be processed next.

1.1.2.9 ReleaseNew<service>Jobs

The ReleaseNew<service>Jobs operation allows a client to remove the condition initiated by
HoldNew<service>Jobs and to release all Jobs previously forced to a PendingHeld state by the
HoldNew<service>Jobs initiated condition so that these Jobs are eligible for scheduling. This is done by
remove the 'JobHoldUntilSpecified' value from the Job's JobStateReasons element and changing the
Jobs’ states to ‘Pending’.

Provided that the requestor is authorized, the Service MUST accept this request in any Service state and
the Service MUST remove the 'JobHoldUntilSpecified' value from the Job's JobStateReasons element for
any Job previously forced to a PendingHeld state by the HoldNew<service>Jobs initiated condition.

If the ReleaseNewScanJobs operation is supported, then the HoldNewScanJobs operation MUST be
supported, and vice-versa.

1.1.2.10 Restart<service>Service

The Restart<service>Service operation causes a Service in any state, even a previously shut down
instance of a Service, to be initialized and set to the Idle state, provided that no errors occur or conditions
exist that would prevent normal operation. The handing of Jobs that were in the Processing, Pending,
PendingHeld, and ProcessingHeld states state prior to Restart is implementation dependent, but a
Service Restart MUST be performed as gracefully as possible and in a way preserving the content and
integrity of any non-terminated Jobs. Job history data, if supported, SHOULD also be preserved.

Provided that the requestor is authorized, the Service MUST accept the request Restart<service>Service
regardless of its current state. Providing that no conditions exist that would normally prevent these
actions, the Service MUST initialize its State to Idle, clear the StateReasons element and set the
IsAcceptingJobs element to true.

1.1.2.11 Resume<service>Service

The Resume<service>Service operation allows a client to cause the Service to resume scheduling Jobs
after scheduling has been paused. Provided that the requestor is authorized and the Service supports this
operation, a Service MUST accept a Resume<service>Service request regardless of the current Service
state; see table . If there are no other reasons why the Service is in the Stopped state, this operation
returns the Service from the Stopped state to the Idle or Processing state from which it was paused, and
removes the 'Paused' value to the Service’s StateReasons element.

If the Resume<service>Service operation is supported, then the Pause<service>Service operation MUST
be supported, and vice-versa.

Table 12 - System State Changes in Response to Resume<service>Service

Current Service state New Service state- response Comment
Idle dle success
 Processing Processing success
 Stopped Processing success If there are Jobs to be processed

 Stopped Idle success If there are no Jobs to be processed.
Stopped Stopped success If other conditions causing a Stopped state exist

1.1.2.12 Set<service>ServiceElements

The Set<service>ServiceElements operation allows a Client to set the values of identified elements in the
Service, provided that they are settable. Settable Elements may be in ServiceCapabilities,
ServiceConfiguration, ServiceDescription and DefaultJobTicket but not in ServiceStatus.

The Service MUST reject the entire request with indications of which element or elements could not be
set if a client request attempts to:

1. Set a non-settable element (including an element not in the ServiceCapabilities,
ServiceConfiguration, ServiceDescription or DefaultJobTicket groups, a read-only element, and
an element not supported or not supported as a writable element in the specific Service
implementation)

2. Set a settable element to an invalid value or to a value that conflicts with the values of other
Service elements, including elements being set in the same request.

3. Set a greater number of elements in one operation than are supported by the Service
implementation (a Service implementation Need Not support set of more than one element at a
time)

If there is no reason to reject setting all of the specified elements to the specified values, the Service
MUST accept this operation request when it is in the Idle or Stopped state, and SHOULD accept the
request when it is in the Processing state.

If the Service accepts the request, only those elements specified in the request are changed unless the
definition of one or more of the set elements explicitly specifies an effect upon some other element.

1.1.2.13 Shutdown<service>Service

The Shutdown<service>Service operation forces the Service to the ‘Down’ state from any state that it is
in, in an orderly manner. That is, the Service MUST stop accepting any further client requests, and MUST
stop scheduling Jobs for processing as soon as the implementation allows, although it SHOULD complete
the processing of any currently processing Jobs. Once down, the Service will no longer respond to any
Client requests other than Restart<service>Service request. Unlike the antecedent IPP Shutdown-Printer
operation which requires that no Jobs be lost, the disposition of any Jobs in the Service that are in the
Pending, PendingHeld, or ProcessingHeld states is implementation dependent. However, as with
Restart<service>Service, Service shutdown must be performed as gracefully as possible and in a way in
preserving the content and integrity of any non-terminated Jobs. Job history data, if supported, SHOULD
also be preserved.

Once shut down, a Service can be roused from its Down state by a Startup<service>Service operation or
a Restart<service>Service operation. If a Service implementation supports Shutdown<service>Service it
must also support Startup<service>Service and vice-versa.[W3]

Provided that the requestor is authorized, the Service MUST accept this operation and following an
orderly progression, transition to the Down state regardless of the current state of the Service.

1.1.2.14 Startup<service>Service

The Startup<service>Service operation is sent to the MFD System and causes a new instance of the
specified Service to begin initialization and then to move through the Down state to the Idle state,
provided that no errors occur or conditions exist that would prevent normal operation.

If a Service implementation supports Shutdown<service>Service it must also support
Startup<service>Service and vice-versa.[W4]

	1.1 Service Operations
	1.1.1 Basic Service Operations
	1.1.1.1 Add<service>HardcopyDocument
	1.1.1.3 Cancel<service>Job
	1.1.1.4 CancelCurrent<service>Job
	1.1.1.5 CancelMy<service>Jobs
	1.1.1.6 Close<service>Job Operation
	1.1.1.7 Create<service>Job
	1.1.1.8 Get<Service>DocumentElements
	1.1.1.10 Get<service>JobElements
	1.1.1.11 Get<service>JobHistory
	1.1.1.12 Get<service>ServiceElements
	1.1.1.13 GetActive<service>Jobs
	1.1.1.14 Hold<service>Job
	1.1.1.15 Release<service>Job
	1.1.1.16 Resubmit<service>Job
	1.1.1.17 Resume<service>Job
	1.1.1.18 Send<service>Document
	1.1.1.19 Send<service>Uri
	1.1.1.20 Set<service>DocumentElements
	1.1.1.21 Set<service>JobElements
	1.1.1.22 SuspendCurrent<service>Job

	1.1.2 Administrative Service Operations
	1.1.2.1 Cancel<service>Jobs
	1.1.2.2 Disable<service>Service
	1.1.2.3 Enable<service>Service
	1.1.2.4 Hold<service>Job
	1.1.2.5 HoldNew<service>Jobs
	1.1.2.6 Pause<service>Service
	1.1.2.7 Pause<service>ServiceAfterCurrentJob
	1.1.2.8 Promote<service>Job
	1.1.2.9 ReleaseNew<service>Jobs
	1.1.2.10 Restart<service>Service
	1.1.2.11 Resume<service>Service
	1.1.2.12 Set<service>ServiceElements
	1.1.2.13 Shutdown<service>Service
	1.1.2.14 Startup<service>Service

