Things we need to track:

Specification Version – (IPP 1.0, IPP 1.1, PSI 1.0, PSI 1.1, etc)

Specification Document Revision – (Version & Date?)

Specification Document Filename – PSI-1.0-YYYY-MM-DD ???

PWG Document Number – Assigned at Approved Standard

Specification Maturity State – (2 states, with ability to differentiate a document that has just been published from one that has been approved)

· States: (a) Draft, (b) Standard

· Acceptance: (1) Working, (2) Candidate

· 1a (wd), 1a (wd), 1a (wd), 2b (cs), 1a (wd), 1a (wd), 1a (wd), 2b (cs), b (std)

wd, wd, cs, wd, wd, wd, cs, std

Example:

XML 1.1 – Candidate recommendation (1st stage) XML 15 Oct 2002:

…\TR\2002\WD-xml11-20020425

…\TR\2002\CR-xml11-20021015

Individual Interface Namespace / Version – (Date)

Latest is still valuable…

Schema Revision – (0.01 – 0.99, 1.0.0, 1.0.1, 1.0.2, etc)

Schema Namespace – (?)

Requirements:

Published WSDL and Schema needs to remain accessible.

A Specification Document should be able to refer to different Interface Revisions.

(i.e. 1.1 of the PSI Specification should be able to reference QueryEndPointsInterface v1.0.5 if we don’t need to change it for 1.1)

	In Filename?
	X
	X
	X (abbr)
	
	
	X
	
	
	
	

	In Path?
	
	
	X
	
	(For WSDL)
	
	
	
	
	

	What Happens?
	Spec Ver
	Spec Doc Revision
	Maturity State
	Maturity Version
	Referenced WSDL Interface Namespace / Version
	PWG Doc Num
	Document Filename
	Document Path
	Schema Revision
	Schema Namespace

	Publish working draft
	PSI 1.0
	2002/01/01
	1a (working draft)
	0.20
	2002/01/01
	N/A
	
	
	
	

	Publish working draft
	PSI 1.0
	2002/01/15
	1a (working draft)
	0.21
	2002/01/15
	N/A
	
	
	
	

	Publish working draft for 1st Last Call
	PSI 1.0
	2003/02/07
	1a (working draft)
	0.99
	2002/02/07
	N/A
	
	
	
	

	Publish Candidate Standard
	PSI 1.0
	2003/02/21
	2b (Candidate Standard)
	1.0.0
	2002/02/07
	N/A
	
	
	
	

	Publish working draft, no interface changes
	PSI 1.0
	2003/03/01
	1a (working draft)
	1.0.1
	2002/02/07
	N/A
	
	
	
	

	Publish working draft, interface changes
	PSI 1.0
	2003/03/15
	1a (working draft)
	1.0.2
	2002/03/15

(All roll until approved standard)
	N/A
	
	
	
	

	Publish working draft, no interface change, bit of verbage, for 2nd Last call
	PSI 1.0
	2003/04/15
	1a (working draft)
	1.0.3
	2002/03/15

(All roll until approved standard) (Future Spec Version can reference previous approved standards)
	N/A
	
	
	
	

	Publish Candidate Standard
	PSI 1.0
	2003/05/01
	2b (Candidate Standard)
	1.0.3
	2002/03/15
	N/A
	
	
	
	

	Publish Standard
	PSI 1.0
	2003/05/20
	b

(Standard)
	1.0.3
	2002/03/15
	5104.1
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

Reference:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservice/html/service04032002.asp
Versioning

Everyone who developed COM applications: How many of you remember the golden rules of versioning? Okay, hands down. As a quick review, here are the rules:

1. Always increment the version number.

2. Freeze the interface on the previous version. All new features should go into a new interface.

3. Freeze all structures used on the previous version. Any enhancements to those structures should show up in new structures.

WSDL version indication is done via the targetNamespace attribute of the definitions element. This namespace gives the SOAP messages meaning by relating the messages to a specific bit of code implemented somewhere on the server. The targetNamespace attribute has an XSD type of anyURI. This attribute could be used in a large number of ways to indicate the version. For a service named Foo that was hosted at msdn.microsoft.com, a few options exist for the first version.

Option 1:

The targetNamespace could be named http://msdn.microsoft.com/foo. This works by giving the interface a unique namespace name. This option does not fit our needs, however, because it does not include an obvious mechanism for indicating whether one version is earlier or later than another. I suppose you could follow up later versions of the interface with namespaces such as http://msdn.microsoft.com/foo1 and http://msdn.microsoft.com/foo2, but that seems silly.

Option 2:

The targetNamespace could be named http://msdn.microsoft.com/1.0/foo. Again, this gives the interface a unique namespace identifier. This option fits our needs, because it gives us an obvious indicator of version as well as a place to increment that version in a way people are used to seeing. As we are dealing with an XML-centric world, however, we might do well to follow the lead of the newer XML specifications, such as SOAP 1.2, XML Schema, and XSLT. While this option is viable, it does not follow this lead.

Option 3:

Call the targetNamespace http://msdn.microsoft.com/2002/04/foo. This has a few small advantages over option 2. For one, this is the versioning scheme employed by the newer XML specifications. People who are used to looking at XML will find versioning by date more familiar. As an added bonus, versioning by date allows a person or machine to easily figure out when the version was released. You can increase the resolution of the version to reflect the frequency of releases. A resolution down to the hour would indicate that releases are coming out far too frequently. If your team does nightly builds, extend the interim granularity of the version to the date of the build. Regardless of what you do, don't be cute and use zero-based month and day-of-month numbers. It's counterintuitive.

Of the above options, both 2 and 3 fit the bill, with 3 being the versioning option that many XML users I have talked to like the best. An added advantage of date-based versioning is that you will know how long the interface has been available.

When changing an XSD type, create a brand new type in a brand new namespace. This new namespace should still stick with your versioning model. If the first version was in a namespace such as http://foo.org/bar/2001/11/20/types, the new namespace should only change the date information. That new type, if published on April 5, 2002, should be in the namespace http://foo.org/bar/2002/04/05/types. Any related sub-types should remain in the old namespace and simply get imported into the new one. Here, no wishy-washy answers.

To sum things up, here are the guidelines to use when updating an interface:

· The changes always go into a new namespace.

· The new interface should be a superset of the old one.

· It is a good idea to keep the data model the same when versioning the interface.

· Never revise data structures. Instead, add new ones as needed.

