Universal Printer Description Format

Specification

Version: Draft 0.4

Section: Constraints

General

Constraints are mainly used to deal with user interface conflicts.

Any driver is expected to provide functionality to select the first element of a list following the specified order, when the element saved the last time is no more available. However it has to look for constraints first. There could be a requirement for a special selection.

Constraints are supposed to be called when a control is initialized or changed.

They are also called when a control is changed to check whether the change could cause problems on other controls.

They also have to be called during creation of the spool/print file.

All three actions mentioned below are defined optional. However if no action is defined, nothing will happen, although the XML is valid.

This constraints approach is richer than others by supporting different levels and different actions. Nonetheless it should still be as easy as in other concepts to define simple constraints.

Element:
Constraint

Applicability:
optional, repeatable

Attributes:

Element:
OperatingSystem

Applicability:
optional, repeatable

Attributes:
OperatingSystem_ID (WindowsMillenium, WindowsNT4, Windows2000, Linux)

If the element does not exist, the constraint is considered global. Otherwise the element lists the ones included.

Element:
Condition (in the content model of the element Constraint)

Applicability:
mandatory, single

Attributes:
Feature

Every constraint has one top level condition with exactly one Feature. This eases readability and implementation.

As the applicability is single, conditions can not be ORed.

It is recommended to establish a constraint by listing the good ones and excluding all others on the top level condition, instead of listing the bad ones.

Figure media types ‘Letter’ and ‘A6’, where there is a constraint with ‘A6’ for ‘Tray 2’.

Two samples for the top level condition:

Good implementation:
if (MediaType != Letter)

Bad implementation:

if (MediaType == A6)

This would avoid problems, which could come up with installable options.

Element:
Condition (in the content model of the element Condition)

Applicability:
optional, single

Attributes:
Feature

Conditions under conditions are optional. This method can be used to realize an AND by nesting the conditions recursively.

As the applicability is single, conditions can not be ORed.

Element:
ConditionSetting (in the content model of the element Condition)

Applicability:
mandatory, repeatable

Attributes:
Relation (E for ==, NE for !=, GT for >, GTE for >=, LT for <, LTE for <=)

Value (string)

Sets on this level can be ORed, as they are repeatable.

Element:
ConditionSetting (in the content model of the element ConditionSetting)

Applicability:
optional, repeatable

Attributes:
Relation (E for == , NE for !=, GT for >, GTE for >=, LT for <, LTE for <=)

Value (string)

ConditionSettings under ConditionSettings are optional. This method can be used to realize an AND by nesting ConditionSettings recursively.

Element:
ActionFilter

Applicability:
optional, single

Attributes:

ActionFilter and ActionMessage are considered mutually exclusive, while ActionFilter and ActionSelection can be combined with some expertise.

Element:
ActionMessage

Applicability:
optional, single

Attributes:
MessageString (string)

It is not recommended to combine ActionMessage and ActionSelection, but work with a SelectFeature below ActionMessageOK, ActionMessageCancel, ActionMessageOther instead if required.

Element:
ActionSelection

Applicability:
optional, single

Attributes:
UIStringReference_Message (string)

Action Selection can be the only action required for a certain constraint or it can be combined with ActionFilter.

Element:
ActionMessageOK

Applicability:
optional, single

Attributes:
UIStringReference_MessageButtonOK (string)

Element:
ActionMessageCancel

Applicability:
optional, single

Attributes:
UIStringReference_MessageButtonCancel (string)

The message when this element is specified will show a Cancel button.

It is seriously recommended not to misuse it for anything else. Be even conservative with using a SelectFeature.

When this button will be pressed the driver will cancel the selection made by the user and sets the controls back to the previous value.

Element:
ActionMessageOther

Applicability:
optional, single

Attributes:
UIStringReference_MessageButtonOther (string)

This button is much more meant to be an extended Cancel event.

When this button will be pressed the driver will cancel the selection made by the user and sets the controls back to the previous value.

The string may show something else than “Cancel”, e.g. “Exit”.

The use of SelectFeature to influence other controls is likely here.

It is not probable to see a Cancel button and a button based on ActionMessageOther together in one message dialog, but it is allowed.

Element:
SelectFeature

Applicability:
optional, multiple

Attributes:
Feature

Appearance (Show, Grey, Hide)

InfoButton (string)

UIStringReference_Info (string)

This is meant to be an extension of standard constraints in a way, that a developer can specify that a certain control should be changed when another control has been changed a certain way (e.g. if element5 of combobox1 is selected, set editbox7 to Off and grey it).

This constraint element defines, whether there should be an info button next to certain controls in case they have been changed or wether the appearance should change other than automatically (automatically could mean to grey a control, which only has one element left with the current driver configuration). An UIStringReference_Info is only assumed to be defined when the InfoButton is set.

Element:
FeatureSetting

Applicability:
optional, single

Attributes:
Value (string)

Comments so far:

Do we want to prepare something for hooking proprietary constraints?

So far the answer is ‘no’.

