IPP> RFC 3251 - Electicity over IP

IPP> RFC 3251 - Electicity over IP

IPP> RFC 3251 - Electicity over IP

McDonald, Ira imcdonald at sharplabs.com
Mon Apr 1 13:30:12 EST 2002


Hi folks,

I couldn't resist sending on this "light" reading:

RFC 3251 "Electricity over IP"
ftp://ftp.isi.edu/in-notes/rfc3251.txt

RFC 3252 "Binary Lexical Octet Ad-hoc Transport (BLOAT)"
ftp://ftp.isi.edu/in-notes/rfc3252.txt

Cheers,
- Ira McDonald
  High North Inc

------------------------------
[from RFC 3251]
Abstract

   Mostly Pointless Lamp Switching (MPLampS) is an architecture for
   carrying electricity over IP (with an MPLS control plane).  According
   to our marketing department, MPLampS has the potential to
   dramatically lower the price, ease the distribution and usage, and
   improve the manageability of delivering electricity.  This document
   is motivated by such work as SONET/SDH over IP/MPLS (with apologies
   to the authors).  Readers of the previous work have been observed
   scratching their heads and muttering, "What next?".  This document
   answers that question.

   This document has also been written as a public service.  The "Sub-
   IP" area has been formed to give equal opportunity to those working
   on technologies outside of traditional IP networking to write
   complicated IETF documents.  There are possibly many who are
   wondering how to exploit this opportunity and attain high visibility.
   Towards this goal, we see the topics of "foo-over-MPLS" (or MPLS
   control for random technologies) as highly amenable for producing a
   countless number of unimplementable documents.  This document
   illustrates the key ingredients that go into producing any "foo-
   over-MPLS" document and may be used as a template for all such work.

[from RFC 3252]
Abstract

   This document defines a reformulation of IP and two transport layer
   protocols (TCP and UDP) as XML applications.

1.   Introduction

1.1. Overview

   This document describes the Binary Lexical Octet Ad-hoc Transport
   (BLOAT): a reformulation of a widely-deployed network-layer protocol
   (IP [RFC791]), and two associated transport layer protocols (TCP
   [RFC793] and UDP [RFC768]) as XML [XML] applications.  It also
   describes methods for transporting BLOAT over Ethernet and IEEE 802
   networks as well as encapsulating BLOAT in IP for gatewaying BLOAT
   across the public Internet.

1.2. Motivation

   The wild popularity of XML as a basis for application-level protocols
   such as the Blocks Extensible Exchange Protocol [RFC3080], the Simple
   Object Access Protocol [SOAP], and Jabber [JABBER] prompted
   investigation into the possibility of extending the use of XML in the
   protocol stack.  Using XML at both the transport and network layer in
   addition to the application layer would provide for an amazing amount
   of power and flexibility while removing dependencies on proprietary
   and hard-to-understand binary protocols.  This protocol unification
   would also allow applications to use a single XML parser for all
   aspects of their operation, eliminating developer time spent figuring
   out the intricacies of each new protocol, and moving the hard work of
   parsing to the XML toolset.  The use of XML also mitigates concerns
   over "network vs. host" byte ordering which is at the root of many
   network application bugs.



More information about the Ipp mailing list